
Igor S Nefedov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2043246/publications.pdf Version: 2024-02-01

ICOP S NEEEDOV

#	Article	IF	CITATIONS
1	Strong spatial dispersion in wire media in the very large wavelength limit. Physical Review B, 2003, 67, .	1.1	545
2	Waves and Energy in Chiral Nihility. Journal of Electromagnetic Waves and Applications, 2003, 17, 695-706.	1.0	396
3	Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions. Physical Review E, 1999, 60, 4891-4898.	0.8	293
4	Perfect absorption in graphene multilayers. Journal of Optics (United Kingdom), 2013, 15, 114003.	1.0	120
5	Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications. Optics Express, 2013, 21, 14988.	1.7	109
6	Photonic band gap structure containing metamaterial with negative permittivity and permeability. Physical Review E, 2002, 66, 036611.	0.8	79
7	Giant radiation heat transfer through micron gaps. Physical Review B, 2011, 84, .	1.1	79
8	Effects of Spatial Dispersion on Reflection From Mushroom-Type Artificial Impedance Surfaces. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 2692-2699.	2.9	77
9	Total absorption in asymmetric hyperbolic media. Scientific Reports, 2013, 3, 2662.	1.6	65
10	Characterization of Surface-Wave and Leaky-Wave Propagation on Wire-Medium Slabs and Mushroom Structures Based on Local and Nonlocal Homogenization Models. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 2700-2714.	2.9	64
11	Electromagnetic mode density for finite quasi-periodic structures. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1947.	0.9	58
12	Artificial Tellegen Particle. Electromagnetics, 2003, 23, 665-680.	0.3	56
13	On potential applications of metamaterials for the design of broadband phase shifters. Microwave and Optical Technology Letters, 2005, 45, 98-102.	0.9	47
14	Propagating and evanescent modes in two-dimensional wire media. Physical Review E, 2005, 71, 046612.	0.8	44
15	Single walled carbon nanotube quantification method employing the Raman signal intensity. Carbon, 2017, 116, 547-552.	5.4	44
16	Generalized field-transforming metamaterials. New Journal of Physics, 2008, 10, 115028.	1.2	43
17	Wideband perfect absorption in arrays of tilted carbon nanotubes. Physical Review B, 2012, 86, .	1.1	43
18	Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes. Physical Review B, 2010, 82, .	1.1	38

#	Article	IF	CITATIONS
19	Infrared properties of randomly oriented silver nanowires. Journal of Applied Physics, 2012, 112, .	1.1	37
20	Waveguide containing a backward-wave slab. Radio Science, 2003, 38, n/a-n/a.	0.8	36
21	Ultrabroadband electromagnetically indefinite medium formed by aligned carbon nanotubes. Physical Review B, 2011, 84, .	1.1	36
22	Waves in hyperbolic and double negative metamaterials including rogues and solitons. Nanotechnology, 2017, 28, 444001.	1.3	35
23	Hyperbolic-metamaterial antennas for broadband enhancement of dipole emission to free space. Journal of Applied Physics, 2014, 116, .	1.1	33
24	Electromagnetic response and homogenization of grids of ferromagnetic microwires. Journal of Applied Physics, 2011, 110, .	1.1	31
25	Effective-medium model of wire metamaterials in the problems of radiative heat transfer. Journal of Applied Physics, 2014, 115, 234905.	1.1	28
26	Super-Planckian far-zone thermal emission from asymmetric hyperbolic metamaterials. Applied Physics Letters, 2014, 105, .	1.5	27
27	Electromagnetic wave refraction at an interface of a double wire medium. Physical Review B, 2005, 72, .	1.1	24
28	A TRIPLE WIRE MEDIUM AS AN ISOTROPIC NEGATIVE PERMITTIVITY METAMATERIAL. Progress in Electromagnetics Research, 2006, 65, 233-246.	1.6	24
29	Hyperlens makes thermal emission strongly super-Planckian. Photonics and Nanostructures - Fundamentals and Applications, 2015, 13, 31-41.	1.0	23
30	Thermal Characterization of Carbon Nanotubes by Photothermal Techniques. International Journal of Thermophysics, 2015, 36, 1349-1357.	1.0	23
31	Photoacoustic Characterization of Randomly Oriented Silver Nanowire Films. International Journal of Thermophysics, 2015, 36, 1342-1348.	1.0	22
32	Investigation of Mueller matrices of anisotropic nonhomogeneous layers in application to an optical model of the cornea. Applied Optics, 1997, 36, 164.	2.1	21
33	Photonic jets from Babinet's cuboid structures in the reflection mode. Optics Letters, 2016, 41, 785.	1.7	21
34	Effective medium model for two-dimensional periodic arrays of carbon nanotubes. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 374-380.	1.0	18
35	Enhancing coherent nonlinear-optical processes in nonmagnetic backward-wave materials. Applied Physics A: Materials Science and Processing, 2012, 109, 835-840.	1.1	15
36	GUIDED WAVES IN UNIAXIAL WIRE MEDIUM SLAB. Progress in Electromagnetics Research, 2005, 51, 167-185.	1.6	14

#	Article	IF	CITATIONS
37	Resistivity and optical transmittance dependence on length and diameter of nanowires in silver nanowire layers in application to transparent conductive coatings. Micro and Nano Letters, 2016, 11, 343-347.	0.6	14
38	Microstrip Slow-Wave Structures on the Bianisotropic Substrate. Electromagnetics, 1997, 17, 343-360.	0.3	13
39	Optically controlled GaAs-GaAlAs photonic band gap structure. Journal of Optics, 2000, 2, 344-347.	1.5	13
40	Evanescent modes stored in cavity resonators with backward-wave slabs. Microwave and Optical Technology Letters, 2003, 38, 153-157.	0.9	13
41	On the effective permittivity of arrays of ferromagnetic wires. Journal of Applied Physics, 2011, 110, 104902.	1.1	12
42	Plasmonic Terahertz Amplification in Graphene-Based Asymmetric Hyperbolic Metamaterial. Photonics, 2015, 2, 594-603.	0.9	12
43	Lateral-drag propulsion forces induced by anisotropy. Scientific Reports, 2017, 7, 6155.	1.6	12
44	New class of solutions of the Korteweg-de Vries-Burgers equation. Applied Mathematics Letters, 2001, 14, 115-121.	1.5	11
45	Reconfigurable Artificial Surfaces Based on Impedance Loaded Wires Close to a Ground Plane. IEEE Transactions on Antennas and Propagation, 2012, 60, 1921-1930.	3.1	11
46	MULTI-MODE BROADBAND POWER TRANSFER THROUGH A WIRE MEDIUM SLAB (INVITED PAPER). Progress in Electromagnetics Research, 2015, 154, 171-180.	1.6	11
47	Conductivity of Carbon Nanotube Layers at Low-Terahertz Frequencies. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 840-845.	2.0	11
48	New 2D graphene hybrid composites as an effective base element of optical nanodevices. Beilstein Journal of Nanotechnology, 2018, 9, 1321-1327.	1.5	11
49	Backward waves in a waveguide, filled with wire media. Microwave and Optical Technology Letters, 2006, 48, 2560-2564.	0.9	10
50	A theory for terahertz lasers based on a graphene hyperbolic metamaterial. Journal of Optics (United) Tj ETQq0 0	0 ₁ gвт /С	verlock 10 Tf
51	Casimir forces between two carbon nanotubes. Physical Review B, 2021, 104, .	1.1	10
52	Artificial lines with exotic dispersion for phase shifters and delay lines. , 2006, , .		9
53	Two-stage distributed amplifier on field emitter arrays. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 1982.	1.6	8
54	Terahertz Oscillator Based on Nonlinear Frequency Conversion in a Double Vertical Cavity. Semiconductors, 2005, 39, 113.	0.2	8

#	Article	IF	CITATIONS
55	Nonlinear-optical frequency conversion in a dual-wavelength vertical-external-cavity surface-emitting laser. Semiconductors, 2008, 42, 463-469.	0.2	8
56	Increasing the electromagnetic attenuation below a quasi-matched surface with use of passive hyperbolic metamaterials. Photonics and Nanostructures - Fundamentals and Applications, 2013, 11, 182-190.	1.0	8
57	Dielectric Constant Estimation of a Carbon Nanotube Layer on the Dielectric Rod Waveguide at Millimeter Wavelengths. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 3265-3271.	2.9	8
58	Broadband power transfer through a metallic wire medium slab. , 2016, , .		8
59	Plasmonic Coaxial Waveguides with Complex Shapes of Cross-Sections. Materials, 2011, 4, 104-116.	1.3	7
60	Hyperbolic Carbon Nanoforest for Phase Matching of Ordinary and Backward Electromagnetic Waves: Second Harmonic Generation. ACS Photonics, 2017, 4, 1240-1244.	3.2	7
61	Wave propagation in a periodic microstrip line on a multilayered anisotropic substrate. , 1996, 6, 416-418.		6
62	Control of the spectrum of the near-field Bloch waves in a waveguide periodically loaded with thin InSb layers. Journal of Communications Technology and Electronics, 2008, 53, 60-61.	0.2	6
63	Dynamic ultramicroscopy of laser-induced flows in colloidal solutions of plasmon-resonance particles. Quantum Electronics, 2008, 38, 530-535.	0.3	6
64	On the electrodynamics of an absorbing uniaxial nonpositive determined (indefinite) medium. Journal of Experimental and Theoretical Physics, 2012, 114, 568-574.	0.2	6
65	Spatiotemporal dispersion and waveguide properties of 2D-periodic metallic rod photonic crystals. Journal of Experimental and Theoretical Physics, 2014, 118, 673-686.	0.2	6
66	Nonlinear Optics with Backward Waves: Extraordinary Features, Materials and Applications. Solid State Phenomena, 0, 213, 222-225.	0.3	6
67	Distributed microwave amplifier on field emitter arrays with a nonhomogeneous energy collector. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 593.	1.6	5
68	Terahertz oscillator with vertical radiation extraction. Technical Physics, 2004, 49, 592-597.	0.2	5
69	Nonlinear frequency conversion in a double vertical-cavity surface-emitting laser. Semiconductors, 2004, 38, 1350-1355.	0.2	5
70	2D Electron Dynamics in Single Layer "Graphene Metamaterial― , 2011, , .		5
71	Application of Wire Media Layers for Coupling Reduction in Antenna Arrays and Microwave Devices. , 2007, , .		4
72	Measurements of the diffusion coefficient of nanoparticles by selective plane illumination microscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2009, 107, 846-852.	0.2	4

#	Article	IF	CITATIONS
73	Nonlinear Backward-Wave Photonic Metamaterials. Advances in Science and Technology, 2012, 77, 246-252.	0.2	4
74	Nanoemitter of giga- and terahertz ranges based on a carbon peapod: Numerical simulation. JETP Letters, 2014, 99, 349-352.	0.4	4
75	Giga- and terahertz-range nanoemitter based on peapod structure. Nano Research, 2015, 8, 2595-2602.	5.8	4
76	Beam compressed system concept based on dielectric cluster of self-similar three-dimensional dielectric cuboids. , 2016, , .		4
77	Radiative Pulling Forces, Exerted by Evanescent Fields Along a Hyperbolic Metamaterial Slab. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700219.	1.2	4
78	Effective medium approach for subwavelength resolution. Electronics Letters, 2007, 43, 1206.	0.5	3
79	Surface waves in a magnetized ferrite slab filled with a wire medium. EPJ Applied Physics, 2009, 46, 32606.	0.3	3
80	Three-level approach to graphene metamaterials: Electron density waves and linear and nonlinear electrodynamics. , 2013, , .		3
81	Nonlinear-optical up and down frequency-converting backward-wave metasensors and metamirrors. , 2013, , .		3
82	Casimir forces exerted by epsilon-near-zero hyperbolic materials. Scientific Reports, 2020, 10, 16831.	1.6	3
83	Controlling the Electronic Properties of a Nanoporous Carbon Surface by Modifying the Pores with Alkali Metal Atoms. Materials, 2020, 13, 610.	1.3	3
84	VECTOR CIRCUIT THEORY FOR SPATIALLY DISPERSIVE UNIAXIAL MAGNETO-DIELECTRIC SLABS. Progress in Electromagnetics Research, 2006, 63, 279-294.	1.6	3
85	Wire Media - Ferrite Substrate for Patch Antenna Miniaturization. , 2007, , .		2
86	Infrared cloaking based on wire media. , 2008, , .		2
87	Wave propagation characteristics in the cavity with hyperbolic medium. , 2018, , .		2
88	Toward the theory of resonant-tunneling triode and tetrode with CNT–graphene grids. Journal of Applied Physics, 2021, 130, 204301.	1.1	2
89	One-dimensional and two-dimensional microstrip periodic structures on the bianisotropic substrate. International Journal of Applied Electromagnetics and Mechanics, 1998, 9, 211-223.	0.3	1
90	Multielement hypersonic piezotransducers with slowly varying parameters for acoustooptic devices. Technical Physics Letters, 1999, 25, 196-197.	0.2	1

#	Article	IF	CITATIONS
91	Guided Waves along Lorentz-Resonant Layers. Electromagnetics, 2008, 28, 544-551.	0.3	1
92	Strong field localization in subwavelength metal-dielectric optical waveguides. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 241-247.	0.2	1
93	Asymmetrical hyperbolic media and their potential applications in photovoltaics and photonics. Proceedings of SPIE, 2013, , .	0.8	1
94	Development of the terahertz emitter model based on nanopeapod in terms of biomedical applications. , 2013, , .		1
95	Electrical and Photovoltaic Properties of Layered Composite Films of Covalently Bonded Graphene and Single-Walled Carbon Nanotubes. Coatings, 2020, 10, 324.	1.2	1
96	Numerical simulation of the THz lasing in the cavity with graphene-based hyperbolic medium. , 2019, , .		1
97	Characterization of Silver Nanowire Layers in the Terahertz Frequency Range. Materials, 2021, 14, 7399.	1.3	1
98	<title>Research on cornea anisotropy</title> ., 1995, , .		0
99	<title>Accuracy of polarization-sensitive optical coherence tomography of anisotropic layered biotissues</title> . , 1999, , .		0
100	Photonic crystals: slow-wave structures for optical range. , 1999, , .		0
101	Simulation of pulsed optical logic gates based on photonic band gap structures. AIP Conference Proceedings, 2001, , .	0.3	0
102	<title>Nonlinear gain in one-dimensional quasi-periodic photon band-gap structure with Kerr
effect</title> . , 2001, 4242, 59.		0
103	Analysis of gain and loss anisotropy in the guiding structure of a long-wave intervalley-transfer laser. Technical Physics, 2002, 47, 788-791.	0.2	0
104	Analysis of the wave diffraction on a polygon dielectric grating by integral equation method. , 2005, , .		0
105	Microwave devices with enhanced phase-compensation principle. , 2006, , .		0
106	<title>Handling of nanoparticles with light pressure forces</title> ., 2007, 6536, 79.		0
107	<title>Analysis of the wave diffraction on a polygon dielectric grating, placed on a dielectric substrate, by integral equation method</title> . , 2007, , .		0
108	Diffraction on a grating of dielectric cylinders with regular polygonal cross sections on a substrate. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 104, 435-442.	0.2	0

#	Article	IF	CITATIONS
109	Integral-equation method in the problem of wave diffraction at a grating consisting of parallel dielectric bars with the cross section of a regular polygon. Journal of Optical Technology (A) Tj ETQq1 1 0.7843	14 rgBT /0	Overlock 10 Tf
110	Controllable Waveguide Based on Capacitively Loaded Wire Medium. , 2008, , .		0
111	Waves along chains of nanopores in noble metals. , 2008, , .		Ο
112	Propagation and attenuation of fields in chains of nanopores. , 2008, , .		0
113	Electrodynamics of periodic arrays of carbon nanotubes. , 2009, , .		Ο
114	Dual-polarized plasmonic nano-cables. , 2009, , .		0
115	Effective medium model for two-dimensional periodic arrays of carbon nanotubes. , 2010, , .		Ο
116	Optical microscopy for nanoparticles temperature and velocity field visualization. , 2010, , .		0
117	Generation of short contrapropagating pulses of second harmonic on frequency double-domain positive/negative index metamaterials. , 2012, , .		Ο
118	Optimization of field propagation in optical coaxial nano-waveguides of complicated-form. , 2012, , .		0
119	Space-time dispersion and waveguide properties of 2D periodic metallic rod photonic crystals. , 2014, , .		Ο
120	Asymmetric hyperbolic metamaterials and their applications for light absorption and amplification. , 2015, , .		0
121	Millimeter wave conductivity of silver nanowire network. , 2016, , .		Ο
122	Hyperbolic Metamaterial Based on Gold Nanowires for Photonic Density of States Control Towards the Super-Planckian Thermal Emission. , 2018, , .		0
123	Enhancement of circular dichroism in epsilon-near-zero chiral hyperbolic metamaterials. Journal of Optics (United Kingdom), 2020, 22, 015101.	1.0	Ο
124	Controllable Semiconductor Photonic Band Gap Structures. , 2002, , 143-156.		0
125	Nonlinear waves in hyperbolic metamaterials: focus on solitons and rogues. , 2018, , .		Ο
126	Subâ€THz Phase Shifters Enabled by Photoconductive Singleâ€Walled Carbon Nanotube Layers. Advanced Photonics Research, 0, , 2200042.	1.7	0