Harry Boyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2043121/publications.pdf

Version: 2024-02-01

516561 610775 29 633 16 24 citations g-index h-index papers 29 29 29 589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A thermal model for phase change materials in a building roof for a tropical and humid climate: Model description and elements of validation. Energy and Buildings, 2014, 70, 71-80.	3.1	49
2	Energy, cost, and CO2 emission comparison between radiant wall panel systems and radiator systems. Energy and Buildings, 2012, 54, 496-502.	3.1	44
3	Building energy efficiency and thermal comfort in tropical climates. Energy and Buildings, 2006, 38, 1093-1103.	3.1	41
4	Study of moisture in buildings for hot humid climates. Energy and Buildings, 2002, 34, 345-355.	3.1	38
5	A detailed weather data generator for building simulations. Energy and Buildings, 2000, 31, 75-88.	3.1	37
6	On the thermal behaviour of roof-mounted radiant barriers under tropical and humid climatic conditions: modelling and empirical validation. Energy and Buildings, 2003, 35, 997-1008.	3.1	34
7	Evaluation of the thermal resistance of a roof-mounted multi-reflective radiant barrier for tropical and humid conditions: Experimental study from field measurements. Energy and Buildings, 2012, 48, 79-90.	3.1	34
8	A simple evaluation of global and diffuse luminous efficacy for all sky conditions in tropical and humid climate. Renewable Energy, 2011, 36, 298-306.	4.3	32
9	Study of tubular daylight guide systems in buildings: Experimentation, modelling and validation. Energy and Buildings, 2016, 129, 308-321.	3.1	29
10	Hybrid modelling of a sugar boiling process. Control Engineering Practice, 2000, 8, 299-310.	3.2	24
11	Implementation and experimental survey of passive design specifications used in new low-cost housing under tropical climates. Energy and Buildings, 2004, 36, 353-366.	3.1	24
12	A combined approach for determining the thermal performance of radiant barriers under field conditions. Solar Energy, 2008, 82, 399-410.	2.9	23
13	A nodal thermal model for photovoltaic systems: Impact on building temperature fields and elements of validation for tropical and humid climatic conditions. Energy and Buildings, 2009, 41, 1117-1126.	3.1	20
14	A complex roof incorporating phase change material for improving thermal comfort in a dedicated test cell. Renewable Energy, 2017, 101, 450-461.	4.3	20
15	Empirical validation of the thermal model of a passive solar cell test. Energy and Buildings, 2001, 33, 589-599.	3.1	19
16	Photometrical analysis of mirrored light pipe: From state-of-the-art on experimental results (1990–2019) to the proposition of new experimental observations in high solar potential climates. Solar Energy, 2019, 193, 637-653.	2.9	19
17	A genetic algorithm applied to the validation of building thermal models. Energy and Buildings, 2005, 37, 858-866.	3.1	17
18	Experimental investigation on a complex roof incorporating phase-change material. Energy and Buildings, 2015, 108, 36-43.	3.1	17

#	Article	IF	CITATIONS
19	Model optimization and validation with experimental data using the case study of a building equipped with photovoltaic panel on roof: Coupling of the building thermal simulation code ISOLAB with the generic optimization program GenOpt. Energy and Buildings, 2013, 58, 333-347.	3.1	15
20	Parametric Sensitivity Analysis of a Test Cell Thermal Model Using Spectral Analysis. Journal of Solar Energy Engineering, Transactions of the ASME, 2002, 124, 237-242.	1.1	15
21	A validation methodology aid for improving a thermal building model: case of diffuse radiation accounting in a tropical climate. Energy and Buildings, 2001, 33, 711-718.	3.1	13
22	Development of a new model to predict indoor daylighting: Integration in CODYRUN software and validation. Energy Conversion and Management, 2011, 52, 2724-2734.	4.4	13
23	Bringing simulation to implementation: presentation of a global approach in the design of passive solar buildings under humid tropical climates. Solar Energy, 2001, 71, 109-120.	2.9	11
24	Empirical Validation of a Thermal Model of a Complex Roof Including Phase Change Materials. Energies, 2016, 9, 9.	1.6	11
25	Bringing scientific knowledge from research to the professional fields: the case of the thermal and airflow design of buildings in tropical climates. Energy and Buildings, 2002, 34, 511-521.	3.1	9
26	Bayesian Parameter Estimation of Convective Heat Transfer Coefficients of a Roof-Mounted Radiant Barrier System. Journal of Solar Energy Engineering, Transactions of the ASME, 2006, 128, 213-225.	1.1	9
27	Natural Ventilation - A New Method Based on the Walton Model Applied to Cross-Ventilated Buildings having Two Large External Openings. International Journal of Ventilation, 2007, 6, 195-206.	0.2	9
28	Thermal Performance of Photovoltaic Systems Integrated in Buildings. , 0, , .		5
29	SHADECO: A low-cost shadow-ring for diffuse measures: State of the art, principles, design and application. Renewable Energy, 2018, 117, 71-84.	4.3	2