
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2042741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death and Differentiation, 2022, 29, 2347-2361.	5.0	2
2	BRCA2 binding through a cryptic repeated motif to HSF2BP oligomers does not impact meiotic recombination. Nature Communications, 2021, 12, 4605.	5.8	8
3	Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. Science Advances, 2020, 6, .	4.7	31
4	Securin-independent regulation of separase by checkpoint-induced shugoshin–MAD2. Nature, 2020, 580, 536-541.	13.7	39
5	A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. ELife, 2020, 9, .	2.8	29
6	The PSMA8 subunit of the spermatoproteasome is essential for proper meiotic exit and mouse fertility. PLoS Genetics, 2019, 15, e1008316.	1.5	37
7	Three-Dimensional Genomic Structure and Cohesin Occupancy Correlate with Transcriptional Activity during Spermatogenesis. Cell Reports, 2019, 28, 352-367.e9.	2.9	112
8	Shugoshin protects centromere pairing and promotes segregation of nonexchange partner chromosomes in meiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9417-9422.	3.3	17
9	Ubiquitin-specific protease 26 (USP26) is not essential for mouse gametogenesis and fertility. Chromosoma, 2019, 128, 237-247.	1.0	18
10	Local activation of mammalian separase in interphase promotes doubleâ€strand break repair and prevents oncogenic transformation. EMBO Journal, 2018, 37, .	3.5	21
11	The Post-anaphase SUMO Pathway Ensures the Maintenance of Centromeric Cohesion through Meiosis I-II Transition in Mammalian Oocytes. Current Biology, 2018, 28, 1661-1669.e4.	1.8	15
12	APC/CCdh1 Enables Removal of Shugoshin-2 from the Arms of Bivalent Chromosomes by Moderating Cyclin-Dependent Kinase Activity. Current Biology, 2017, 27, 1462-1476.e5.	1.8	8
13	Sororin loads to the synaptonemal complex central region independently of meiotic cohesin complexes. EMBO Reports, 2016, 17, 695-707.	2.0	27
14	piRNA-associated proteins and retrotransposons are differentially expressed in murine testis and ovary of aryl hydrocarbon receptor deficient mice. Open Biology, 2016, 6, 160186.	1.5	16
15	C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nature Communications, 2016, 7, 13298.	5.8	80
16	Meikin is a conserved regulator of meiosis-I-specific kinetochore function. Nature, 2015, 517, 466-471.	13.7	138
17	STAG3 is a strong candidate gene for male infertility. Human Molecular Genetics, 2014, 23, 3421-3431.	1.4	69
18	Cohesin removal precedes topoisomerase IIα-dependent decatenation at centromeres in male mammalian meiosis II. Chromosoma, 2014, 123, 129-146.	1.0	28

2

#	Article	IF	CITATIONS
19	Mutant Cohesin in Premature Ovarian Failure. New England Journal of Medicine, 2014, 370, 943-949.	13.9	244
20	Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis implies functions in distinct chromosome processes. Journal of Cell Science, 2013, 126, 4239-52.	1.2	52
21	Meiotic cohesin complexes are essential for the formation of the axial element in mice. Journal of Cell Biology, 2012, 197, 877-885.	2.3	100
22	Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends in Genetics, 2012, 28, 351-360.	2.9	66
23	Lamins, guardians of the soma and the genome. Cell Cycle, 2011, 10, 3236-3236.	1.3	2
24	Identification and molecular characterization of the mammalian α-kleisin RAD21L. Cell Cycle, 2011, 10, 1477-1487.	1.3	69
25	The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO Journal, 2011, 30, 3091-3105.	3.5	138
26	Sequential Assembly of Centromeric Proteins in Male Mouse Meiosis. PLoS Genetics, 2009, 5, e1000417.	1.5	43
27	Metalloproteinase MT5-MMP is an essential modulator of neuro-immune interactions in thermal pain stimulation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16451-16456.	3.3	69
28	Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. Journal of Cell Biology, 2008, 181, 27-35.	2.3	160
29	Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes and Development, 2008, 22, 2400-2413.	2.7	147
30	Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood, 2008, 112, 2539-2545.	0.6	268
31	Nuclear envelope defects cause stem cell dysfunction in premature-aging mice. Journal of Experimental Medicine, 2008, 205, i10-i10.	4.2	0
32	Earlier Onset of Tumoral Angiogenesis in Matrix Metalloproteinase-19–Deficient Mice. Cancer Research, 2006, 66, 5234-5241.	0.4	65
33	Genomic instability in laminopathy-based premature aging. Nature Medicine, 2005, 11, 780-785.	15.2	579
34	Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature, 2005, 437, 564-568.	13.7	438
35	Diet-Induced Obesity and Reduced Skin Cancer Susceptibility in Matrix Metalloproteinase 19-Deficient Mice. Molecular and Cellular Biology, 2004, 24, 5304-5313.	1.1	96
		0 DT 15	

36

3

Temporal Stability of Isozyme Allele Frequencies in Wild Populations of Brown Trout (Salmo Trutta) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	CITATIONS
37	Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. International Journal of Developmental Biology, 2004, 48, 411-424.	0.3	492
38	Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genetics, 2003, 35, 252-257.	9.4	549
39	Matrix Metalloproteinases and Tumor Progression. Advances in Experimental Medicine and Biology, 2003, 532, 91-107.	0.8	134
40	Structural and Enzymatic Characterization of Drosophila Dm2-MMP, a Membrane-bound Matrix Metalloproteinase with Tissue-specific Expression. Journal of Biological Chemistry, 2002, 277, 23321-23329.	1.6	89
41	Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase–deficient mice. Nature Genetics, 2002, 31, 94-99.	9.4	499
42	Biochemical Characterization of the Catalytic Domain of Human Matrix Metalloproteinase 19. Journal of Biological Chemistry, 2000, 275, 14809-14816.	1.6	118
43	Dm1-MMP, a Matrix Metalloproteinase fromDrosophila with a Potential Role in Extracellular Matrix Remodeling during Neural Development. Journal of Biological Chemistry, 2000, 275, 35978-35985.	1.6	108
44	An overview of collagenase-3 expression in malignant tumors and analysis of its potential value as a target in antitumor therapies. Clinica Chimica Acta, 2000, 291, 137-155.	0.5	78
45	Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP). FEBS Letters, 2000, 478, 52-56.	1.3	110
46	Cloning and Characterization of Human MMP-23, a New Matrix Metalloproteinase Predominantly Expressed in Reproductive Tissues and Lacking Conserved Domains in Other Family Members. Journal of Biological Chemistry, 1999, 274, 4570-4576.	1.6	181
47	Evaluation of Some Newer Matrix Metalloproteinases. Annals of the New York Academy of Sciences, 1999, 878, 25-39.	1.8	90
48	Expression and regulation of collagenaseâ€3 (MMPâ€13) in human malignant tumors. Apmis, 1999, 107, 45-53.	0.9	77
49	Molecular Cloning and Structural and Functional Characterization of Human Cathepsin F, a New Cysteine Proteinase of the Papain Family with a Long Propeptide Domain. Journal of Biological Chemistry, 1999, 274, 13800-13809.	1.6	76
50	Identification and Chromosomal Location of Two Human Genes Encoding Enzymes Potentially Involved in Proteolytic Maturation of Farnesylated Proteins. Genomics, 1999, 58, 270-280.	1.3	55
51	Genomic Structure and Chromosomal Localization of the Human Cathepsin O Gene (CTSO). Genomics, 1998, 53, 231-234.	1.3	21
52	Structural Characterization and Chromosomal Localization of the Gene Encoding Human Biphenyl Hydrolase-Related Protein (BPHL). Genomics, 1998, 51, 459-462.	1.3	7
53	Localization of the Human Membrane Type 4-Matrix Metalloproteinase Gene (MMP17) to Chromosome 12q24. Genomics, 1998, 54, 578-579.	1.3	7
54	Cathepsin Z, a Novel Human Cysteine Proteinase with a Short Propeptide Domain and a Unique Chromosomal Location. Journal of Biological Chemistry, 1998, 273, 16816-16823.	1.6	124

#	Article	IF	CITATIONS
55	Collagenase 2 (MMP-8) Expression in Murine Tissue-remodeling Processes. Journal of Biological Chemistry, 1998, 273, 23959-23968.	1.6	121
56	Gene Characterization, Promoter Analysis, and Chromosomal Localization of Human Bleomycin Hydrolase. Journal of Biological Chemistry, 1997, 272, 33298-33304.	1.6	26
57	Identification and Characterization of a Novel Human Matrix Metalloproteinase with Unique Structural Characteristics, Chromosomal Location, and Tissue Distribution. Journal of Biological Chemistry, 1997, 272, 4281-4286.	1.6	207
58	Identification and Structural and Functional Characterization of Human Enamelysin (MMP-20)â€,‡. Biochemistry, 1997, 36, 15101-15108.	1.2	199
59	Structural Analysis and Promoter Characterization of the Human Collagenase-3 Gene (MMP13). Genomics, 1997, 40, 222-233.	1.3	188
60	Physical localization and characterization of the Bgll element in the genomes of Atlantic salmon (Salmo salar L.) and brown trout (S. trutta L.). Gene, 1997, 194, 9-18.	1.0	12
61	Alternative splicing gives rise to two novel long isoforms of Zn-α2-glycoprotein, a member of the immunoglobulin superfamily. Gene, 1996, 169, 233-236.	1.0	8
62	Fine Physical Mapping of the Human Matrix Metalloproteinase Genes Clustered on Chromosome 11q22.3. Genomics, 1996, 37, 266-269.	1.3	54
63	Functional Analysis of a p21 Mutant (Arg94→ Trp) Identified in a Human Breast Carcinoma. Journal of Biological Chemistry, 1996, 271, 15782-15786.	1.6	50
64	The human collagenase-3 (CLG3) gene is located on chromosome 11q22.3 clustered to other members of the matrix metalloproteinase gene family. Genomics, 1995, 26, 615-618.	1.3	48
65	Evolution of chromosome polymorphic patterns in salmonids: Within-generation variation with ageing. Aquaculture, 1995, 132, 233-237.	1.7	2
66	Genetic variation among Atlantic salmon in six Spanish rivers. Journal of Fish Biology, 1994, 45, 831-837.	0.7	27
67	Organization and chromosomal location of the major histone cluster in brown trout, Atlantic salmon and rainbow trout. Chromosoma, 1994, 103, 147-152.	1.0	59
68	Genetic variation among Atlantic salmon in six Spanish rivers. Journal of Fish Biology, 1994, 45, 831-837.	0.7	2