Ming-Jen Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2042479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secondary Metabolites from the Mycelia of the Fungus Monascus pilosus BCRC 38072. Chemical and Pharmaceutical Bulletin, 2008, 56, 394-397.	0.6	45
2	Endiandric Acid Analogues from the Roots of <i>Beilschmiedia erythrophloia</i> . Journal of Natural Products, 2009, 72, 53-58.	1.5	36
3	Inhibitory Effects of Constituents of an Endophytic Fungus <i>Hypoxylon investiens</i> on Nitric Oxide and Interleukinâ€6 Production in RAW264.7 Macrophages. Chemistry and Biodiversity, 2014, 11, 949-961.	1.0	31
4	Monascusazaphilones A–C, three new azaphilone analogues isolated from the fungus <i>Monascus purpureus</i> BCRC 38108. Natural Product Research, 2013, 27, 1145-1152.	1.0	30
5	Secondary Metabolites from the Endophytic Fungus <i>Xylaria cubensis</i> . Helvetica Chimica Acta, 2014, 97, 1689-1699.	1.0	24
6	Antioxidant and Anti-α-Glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Fruits of Crataegus pinnatifida. Antioxidants, 2022, 11, 320.	2.2	19
7	Three new constituents from the fungus of Monascus purpureus and their anti-inflammatory activity. Phytochemistry Letters, 2019, 31, 242-248.	0.6	16
8	Secondary metabolites isolated from the fungus Biscogniauxia cylindrospora BCRC 33717. Chemistry of Natural Compounds, 2011, 47, 527-530.	0.2	15
9	Identification of new pigments produced by the fermented rice of the fungus Monascus pilosus and their anti-inflammatory activity. Phytochemistry Letters, 2020, 40, 181-187.	0.6	10
10	Constituents of the Endophytic Fungus <i>Annulohypoxylon boveri</i> var. <i>microspora</i> BCRC 34012. Helvetica Chimica Acta, 2011, 94, 1108-1114.	1.0	8
11	Chemical Constituents from a Soilâ€Derived Actinomycete, <i>Actinomadura miaoliensis</i> BCRC 16873, and Their Inhibitory Activities on Lipopolysaccharideâ€Induced Tumor Necrosis Factor Production. Chemistry and Biodiversity, 2013, 10, 303-312.	1.0	8
12	Chemical Constituents of the Endophytic Fungus Ophiocordyceps sobolifera. Chemistry of Natural Compounds, 2019, 55, 309-312.	0.2	6
13	A New Azaphilone Derivative from the Monascus kaoliang Fermented Rice. Chemistry of Natural Compounds, 2019, 55, 79-81.	0.2	6
14	Compounds from Monascus sanguineus. Chemistry of Natural Compounds, 2021, 57, 545-547.	0.2	5
15	Chemical Constituents from a Mangroveâ€Đerived Actinobacteria Isoptericola chiayiensis BCRC 16888 and Evaluation of Their Antiâ€NO Activity. Chemistry and Biodiversity, 2021, 18, e2100211.	1.0	5
16	Secondary Metabolites with Anti-Inflammatory Activities from One Actinobacteria Amycolatopsis taiwanensis. Molecules, 2021, 26, 5765.	1.7	5
17	Secondary Metabolites with Antimicrobial Activities from Chamaecyparis obtusa var. formosana. Molecules, 2022, 27, 429.	1.7	5
18	Saccharpiscinols A–C: Flavans with Potential Anti-Inflammatory Activities from One Actinobacteria Saccharomonospora piscinae. Molecules, 2021, 26, 4909.	1.7	4

Ming-Jen Cheng

#	Article	IF	CITATIONS
19	Chemical Constituents of Metabolites Produced by the Actinomycete Acrocarpospora punica. Chemistry of Natural Compounds, 2014, 50, 606-610.	0.2	3
20	Benzenoid Derivatives and Amide Constituents of the Monascus spFermented Rice. Chemistry of Natural Compounds, 2019, 55, 787-789.	0.2	3
21	A New Compound from Monascus Floridanus. Chemistry of Natural Compounds, 2020, 56, 286-288.	0.2	3
22	Secondary Metabolites with Anti-Inflammatory Activities from an ActinobacteriaÂHerbidospora daliensis. Molecules, 2022, 27, 1887.	1.7	3
23	Additional Chemical Constituents of an Endophytic Fungus Xylaria papulis. Chemistry of Natural Compounds, 2019, 55, 340-342.	0.2	2
24	Novel Antifungal Dimers from the Roots of Taiwania cryptomerioides. Molecules, 2022, 27, 437.	1.7	2
25	Secondary Metabolites from the Actinobacterium Amycolatopsis taiwanensis. Chemistry of Natural Compounds, 2022, 58, 175-177.	0.2	2
26	Secondary Metabolites with Anti-Inflammatory from the Roots of Cimicifuga taiwanensis. Molecules, 2022, 27, 1657.	1.7	2
27	SECONDARY METABOLITES FROM THE CULTURE BROTH OF ACTINOMYCETE ACROCARPOSPORA SP. FIRDI 001 AND THEIR ANTIMICROBIAL ACTIVITY. Journal of the Chilean Chemical Society, 2009, 54, .	0.5	1
28	Compounds from Monascus pallens. Chemistry of Natural Compounds, 2021, 57, 761-763.	0.2	1
29	A New Constituent of Herbidospora daliensis Actinobacteria. Chemistry of Natural Compounds, 2021, 57, 53-55.	0.2	1
30	Polar Metabolites from the Actinobacterium Isoptericola chiayiensis Isolated from Mangrove Soil. Chemistry of Natural Compounds, 2021, 57, 1134-1136.	0.2	1
31	Metabolites from a New Actinobacteria, Herbidospora yilanensis. Chemistry of Natural Compounds, 2022, 58, 172-174.	0.2	1
32	New Metabolite from the Fungus Monascus lunisporas BCRC 33640. Chemistry of Natural Compounds, 2022, 58, 283.	0.2	1
33	Metabolites from the Endophytic Fungus Hypoxylon monticulosum. Chemistry of Natural Compounds, 2020, 56, 1170-1172.	0.2	0
34	Water-Soluble Constituents of Phialophora lagerbergii. Chemistry of Natural Compounds, 2021, 57, 921-923.	0.2	0
35	Secondary Metabolites with Antimycobacterial Activities from One Actinobacteria: Herbidospora yilanensis. Molecules, 2021, 26, 6236.	1.7	0
36	Metabolites from the Actinobacterium Saccharomonospora piscinae Isolated from a Fishpond Sediment. Chemistry of Natural Compounds, 2021, 57, 1116-1118.	0.2	0

#	Article	IF	CITATIONS
37	Metabolite from the Fungus of Phialophora lagerbergii. Chemistry of Natural Compounds, 2021, 57, 1032-1034.	0.2	0
38	New Metabolite from the Fungus Monascus argentinensis BCRC 33998. Chemistry of Natural Compounds, 0, , .	0.2	0