Sylvie Ricard-Blum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2042211/publications.pdf

Version: 2024-02-01

all docs

109321 98798 7,592 69 35 67 citations h-index g-index papers 71 71 71 11352 docs citations times ranked citing authors

#	Article	IF	Citations
1	The MIntAct projectâ€"IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 2014, 42, D358-D363.	14.5	1,634
2	The Collagen Family. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004978-a004978.	5.5	1,395
3	Protein interaction data curation: the International Molecular Exchange (IMEx) consortium. Nature Methods, 2012, 9, 345-350.	19.0	500
4	A guide to the composition and functions of the extracellular matrix. FEBS Journal, 2021, 288, 6850-6912.	4.7	320
5	PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nature Methods, 2011, 8, 528-529.	19.0	274
6	Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chemical Reviews, 2018, 118, 9152-9232.	47.7	253
7	Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays in Biochemistry, 2019, 63, 349-364.	4.7	184
8	Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Experimental Dermatology, 2014, 23, 457-463.	2.9	163
9	Transglutaminase-mediated cross-linking is involved in the stabilization of extracellular matrix in human liver fibrosis. Journal of Hepatology, 2001, 35, 367-375.	3.7	156
10	Characterization of Endostatin Binding to Heparin and Heparan Sulfate by Surface Plasmon Resonance and Molecular Modeling. Journal of Biological Chemistry, 2004, 279, 2927-2936.	3.4	119
11	MatrixDB, the extracellular matrix interaction database. Nucleic Acids Research, 2011, 39, D235-D240.	14.5	117
12	Molecular and tissue alterations of collagens in fibrosis. Matrix Biology, 2018, 68-69, 122-149.	3.6	108
13	Glycosaminoglycan–Protein Interactions: The First Draft of the Glycosaminoglycan Interactome. Journal of Histochemistry and Cytochemistry, 2021, 69, 93-104.	2.5	105
14	Heparin–protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis. Matrix Biology, 2014, 35, 73-81.	3.6	103
15	The complex portal - an encyclopaedia of macromolecular complexes. Nucleic Acids Research, 2015, 43, D479-D484.	14.5	100
16	Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biology, 2019, 75-76, 170-189.	3.6	95
17	PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins. Nucleic Acids Research, 2021, 49, D404-D411.	14.5	95
18	Matricryptins derived from collagens and proteoglycans. Frontiers in Bioscience - Landmark, 2011, 16, 674.	3.0	93

#	Article	IF	Citations
19	MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Research, 2019, 47, D376-D381.	14.5	93
20	Molecular Interplay between Endostatin, Integrins, and Heparan Sulfate. Journal of Biological Chemistry, 2009, 284, 22029-22040.	3.4	89
21	Structures and interactions of syndecans. FEBS Journal, 2019, 286, 2994-3007.	4.7	89
22	The IntAct database: efficient access to fine-grained molecular interaction data. Nucleic Acids Research, 2022, 50, D648-D653.	14.5	89
23	MatrixDB, a database focused on extracellular protein–protein and protein–carbohydrate interactions. Bioinformatics, 2009, 25, 690-691.	4.1	88
24	Interaction of the coiledâ€coil domain with glycosaminoglycans protects angiopoietinâ€ike 4 from proteolysis and regulates its antiangiogenic activity. FASEB Journal, 2009, 23, 940-949.	0.5	84
25	Hydroxypyridinium collagen cross-links in human liver fibrosis: Study of alveolar echinococcosis. Hepatology, 1992, 15, 599-602.	7.3	79
26	The First Draft of the Endostatin Interaction Network. Journal of Biological Chemistry, 2009, 284, 22041-22047.	3.4	78
27	Insights into How CUB Domains Can Exert Specific Functions while Sharing a Common Fold. Journal of Biological Chemistry, 2007, 282, 16924-16933.	3.4	71
28	Proteases decode the extracellular matrix cryptome. Biochimie, 2016, 122, 300-313.	2.6	63
29	The Collagen Superfamily. Topics in Current Chemistry, 0, , 35-84.	4.0	59
30	Intrinsic disorder of the extracellular matrix. Molecular BioSystems, 2011, 7, 3353.	2.9	54
31	Tetrastatin, the NC1 Domain of the α4(IV) Collagen Chain: A Novel Potent Anti-Tumor Matrikine. PLoS ONE, 2012, 7, e29587.	2.5	51
32	Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells. Frontiers in Pharmacology, 2016, 7, 11.	3.5	51
33	Towards a unified open access dataset of molecular interactions. Nature Communications, 2020, 11, 6144.	12.8	49
34	Large-Scale Investigation of Leishmania Interaction Networks with Host Extracellular Matrix by Surface Plasmon Resonance Imaging. Infection and Immunity, 2014, 82, 594-606.	2.2	41
35	Target-Derived Matricryptins Organize Cerebellar Synapse Formation through $\hat{l}\pm3\hat{l}^21$ Integrins. Cell Reports, 2012, 2, 223-230.	6.4	40
36	Glycosaminoglycanomics: where we are. Glycoconjugate Journal, 2017, 34, 339-349.	2.7	40

#	Article	lF	CITATIONS
37	Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix Biology, 2016, 52-54, 141-150.	3.6	39
38	Insights into the structure and dynamics of lysyl oxidase propeptide, a flexible protein with numerous partners. Scientific Reports, 2018, 8, 11768.	3.3	39
39	Extended interaction network of procollagen C-proteinase enhancer-1Âin the extracellular matrix. Biochemical Journal, 2014, 457, 137-149.	3.7	37
40	Binding of Procollagen C-Proteinase Enhancer-1 (PCPE-1) to Heparin/Heparan Sulfate. Journal of Biological Chemistry, 2010, 285, 33867-33874.	3.4	34
41	Mapping of heparin/heparan sulfate binding sites on $\hat{l}\pm\nu\hat{l}^2$ 3 integrin by molecular docking. Journal of Molecular Recognition, 2013, 26, 76-85.	2.1	32
42	Low Resolution Structure Determination Shows Procollagen C-Proteinase Enhancer to be an Elongated Multidomain Glycoprotein. Journal of Biological Chemistry, 2003, 278, 7199-7205.	3.4	29
43	The glycosaminoglycan interactome 2.0. American Journal of Physiology - Cell Physiology, 2022, 322, C1271-C1278.	4.6	29
44	A pipeline to translate glycosaminoglycan sequences into 3D models. Application to the exploration of glycosaminoglycan conformational space. Glycobiology, 2019, 29, 36-44.	2.5	28
45	The carboxy-terminal cross-linked telopeptide of type I collagen (ICTP) is a potential serum marker of ongoing liver fibrosis. Clinica Chimica Acta, 1996, 248, 187-195.	1.1	26
46	Pyridinoline, a Mature Collagen Cross-Link, in Fibrotic Livers from Schistosoma mansoni-Infected Mice. American Journal of Tropical Medicine and Hygiene, 1992, 47, 816-820.	1.4	26
47	A Three-Dimensional Model of Human Lysyl Oxidase, a Cross-Linking Enzyme. ACS Omega, 2019, 4, 8495-8505.	3.5	21
48	Scavenger Receptor Cysteine-Rich domains of Lysyl Oxidase-Like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms. Matrix Biology, 2020, 88, 33-52.	3.6	20
49	The Interactome of Cancer-Related Lysyl Oxidase and Lysyl Oxidase-Like Proteins. Cancers, 2021, 13, 71.	3.7	20
50	Endostatin Level in Cerebrospinal Fluid of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 44, 1253-1261.	2.6	17
51	GAG-DB, the New Interface of the Three-Dimensional Landscape of Glycosaminoglycans. Biomolecules, 2020, 10, 1660.	4.0	16
52	The Multimerization State ofÂtheÂAmyloid-β42 Peptide (Aβ42) Governs its Interaction Network withÂtheÂExtracellular Matrix. Journal of Alzheimer's Disease, 2017, 56, 991-1005.	2.6	15
53	Protein–glycosaminoglycan interaction networks: Focus on heparan sulfate. Perspectives in Science, 2017, 11, 62-69.	0.6	13
54	Glycosaminoglycan interaction networks and databases. Current Opinion in Structural Biology, 2022, 74, 102355.	5.7	13

#	Article	IF	CITATIONS
55	Urinary excretion of the collagen cross-link pyridinoline increases during liver fibrogenesis. Journal of Hepatology, 1997, 26, 1356-1362.	3.7	12
56	Glycosaminoglycans: major biological players. Glycoconjugate Journal, 2017, 34, 275-276.	2.7	12
57	Analysis of Procollagen C-Proteinase Enhancer-1/Glycosaminoglycan Binding Sites and of the Potential Role of Calcium Ions in the Interaction. International Journal of Molecular Sciences, 2019, 20, 5021.	4.1	11
58	Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Seminars in Cell and Developmental Biology, 2020, 101, 161-169.	5.0	11
59	Computational and experimental characterization of the novel ECM glycoprotein SNED1 and prediction of its interactome. Biochemical Journal, 2021, 478, 1413-1434.	3.7	10
60	Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases. Scientific Reports, 2017, 7, 16958.	3.3	9
61	Building Proteinâ€Protein and Proteinâ€Glycosaminoglycan Interaction Networks Using MatrixDB, the Extracellular Matrix Interaction Database. Current Protocols, 2021, 1, e47.	2.9	9
62	Sialic acids rather than glycosaminoglycans affect normal and sickle red blood cell rheology by binding to four major sites on fibrinogen. American Journal of Hematology, 2020, 95, E77-E80.	4.1	8
63	Extended disorder at the cell surface: The conformational landscape of the ectodomains of syndecans. Matrix Biology Plus, 2021, 12, 100081.	3.5	7
64	A comparative analysis ofÂsecreted protein disulfide isomerases from the tropical co-endemic parasites Schistosoma mansoni and Leishmania major. Scientific Reports, 2019, 9, 9568.	3.3	6
65	The Extracellular Matrix Goes -Omics: Resources and Tools. Biology of Extracellular Matrix, 2020, , 1-16.	0.3	6
66	Chapter 11. Strategies for Building Protein–Glycosaminoglycan Interaction Networks Combining SPRi, SPR, and BLI. , 0, , 398-414.		5
67	A Bioinformatics View of Glycan–Virus Interactions. Viruses, 2019, 11, 374.	3.3	4
68	Extracellular Matrix Networks: From Connections to Functions. Biology of Extracellular Matrix, 2020, , 101-129.	0.3	3
69	Impact of calcium ions on the structural and dynamic properties of heparin oligosaccharides by computational analysis. Computational Biology and Chemistry, 2022, 99, 107727.	2.3	1