
Jacek Jakusz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2042106/publications.pdf Version: 2024-02-01

INCER INVIST

#	Article	IF	CITATIONS
1	A linear fully balanced CMOS OTA for VHF filtering applications. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 1997, 44, 174-187.	2.2	73
2	An Analog Sub-Miliwatt CMOS Image Sensor With Pixel-Level Convolution Processing. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 279-289.	5.4	33
3	High-frequency two-input CMOS OTA for continuous-time filter applications. IET Circuits, Devices and Systems, 2000, 147, 13.	0.6	27
4	A CMOS Pixel With Embedded ADC, Digital CDS and Gain Correction Capability for Massively Parallel Imaging Array. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 38-49.	5.4	24
5	CMOS realisation of analogue processor for early vision processing. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2011, 59, 141-147.	0.8	15
6	A linear CMOS OTA for VHF applications. , 0, , .		14
7	Differential pair transconductor linearisation via electronically controlled current-mode cells. Electronics Letters, 1992, 28, 1093.	1.0	12
8	A 1-nS 1-V Sub-1-µW Linear CMOS OTA with Rail-to-Rail Input for Hz-Band Sensory Interfaces. Sensors, 2020, 20, 3303.	3.8	11
9	A nine-input 1.25ÂmW, 34Âns CMOS analog median filter for image processing in real time. Analog Integrated Circuits and Signal Processing, 2013, 76, 233-243.	1.4	7
10	Analog CMOS processor for early vision processing with highly reduced power consumption. , 2011, , .		4
11	A High-Efficient Measurement System With Optimization Feature for Prototype CMOS Image Sensors. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2363-2372.	4.7	3
12	A 27MHz Fully-Balanced OTA-C Filter in 2μ;m CMOS Technology. , 1998, , 35-40.		2
13	Characteristics of an Image Sensor with Early-Vision Processing Fabricated in Standard 0.35 μm Cmos Technology. Metrology and Measurement Systems, 2012, 19, 191-202.	1.4	2
14	CMOS implementation of an analogue median filter for image processing in real time. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61, 725-730.	0.8	2
15	Low-Power Receivers for Wireless Capacitive Coupling Transmission in 3-D-Integrated Massively Parallel CMOS Imager. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2556-2565.	5.4	2
16	Starter for Voltage Boost Converter to Harvest Thermoelectric Energy for Body-Worn Sensors. Energies, 2021, 14, 4092.	3.1	2
17	Automatic tuning of a resonant circuit in wireless power supply systems for biomedical sensors. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2016, 64, 641-646.	0.8	2
18	Ladder-Based Synthesis and Design of Low-Frequency Buffer-Based CMOS Filters. Electronics (Switzerland), 2021, 10, 2931.	3.1	2

JACEK JAKUSZ

#	Article	IF	CITATIONS
19	A low-voltage fully-differential BiCMOS op amp for polyphase filter. , 0, , .		1
20	Light-Powered Starter for Micro-Power Boost DC–DC Converter for CMOS Image Sensors. Circuits, Systems, and Signal Processing, 2020, 39, 1195-1212.	2.0	1
21	Unity-Gain Zero-Offset CMOS Buffer with Improved Feedforward Path. Electronics (Switzerland), 2021, 10, 1613.	3.1	1
22	Niskomocowy komparator z zatrzaskiem przeznaczony do cyfrowego przetwornika obrazu CMOS. Przeglad Elektrotechniczny, 2015, 1, 59-62.	0.2	1
23	Low-Voltage Low-Power Filters with Independent ω0 and Q Tuning for Electronic Cochlea Applications. Electronics (Switzerland), 2022, 11, 534.	3.1	1
24	Structure of signal flow graph of OTA-C high-pass filters reduced in the number of OTAs. , 0, , .		0
25	A High-Efficient Low-Voltage Rectifier for CMOS Technology. Metrology and Measurement Systems, 2016, 23, 261-268.	1.4	0