Caterina Vizzardelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041966/publications.pdf

Version: 2024-02-01

471509 477307 1,613 32 17 29 citations h-index g-index papers 33 33 33 2185 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	NSG mice humanized with allergenâ€specific Tâ€cell lines as in vivo model of respiratory allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2081-2084.	5.7	4
2	Neutrophils promote T-cell–mediated inflammation in allergy. Journal of Allergy and Clinical Immunology, 2019, 143, 1923-1925.e3.	2.9	7
3	Blocking antibodies induced by allergenâ€specific immunotherapy ameliorate allergic airway disease in a human/mouse chimeric model. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 851-861.	5.7	19
4	Surface LAMP-2 Is an Endocytic Receptor That Diverts Antigen Internalized by Human Dendritic Cells into Highly Immunogenic Exosomes. Journal of Immunology, 2017, 199, 531-546.	0.8	40
5	Dendritic Cell-Secreted Lipocalin2 Induces CD8+ T-Cell Apoptosis, Contributes to T-Cell Priming and Leads to a TH1 Phenotype. PLoS ONE, 2014, 9, e101881.	2.5	30
6	Toll-Like Receptor 4 Engagement Drives Differentiation of Human and Murine Dendritic Cells from a Pro- into an Anti-Inflammatory Mode. PLoS ONE, 2013, 8, e54879.	2.5	24
7	Transcriptional Profiling of Dendritic Cells in Response to Pathogens. , 2006, , 461-486.		0
8	Effects of dexamethazone on LPS-induced activationand migration of mouse dendritic cells revealed by a genome-wide transcriptional analysis. European Journal of Immunology, 2006, 36, 1504-1515.	2.9	51
9	A critical role for lipophosphoglycan in proinflammatory responses of dendritic cells toLeishmania mexicana. European Journal of Immunology, 2005, 35, 476-486.	2.9	43
10	A Type I IFN-Dependent Pathway Induced by <i>Schistosoma mansoni</i> Eggs in Mouse Myeloid Dendritic Cells Generates an Inflammatory Signature. Journal of Immunology, 2004, 172, 3011-3017.	0.8	63
11	A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics, 2004, 5, 203.	2.6	105
12	The Immune Response Is Initiated by Dendritic Cells via Interaction with Microorganisms and Interleukinâ€⊋ Production. Journal of Infectious Diseases, 2003, 187, S346-S350.	4.0	23
13	Neonatal porcine pancreatic cell clusters as a potential source for transplantation in humans: Characterization of proliferation, apoptosis, xenoantigen expression and gene delivery with recombinant AAV. Xenotransplantation, 2002, 9, 14-24.	2.8	26
14	Early assessment of apoptosis in isolated islets of Langerhans. Transplantation Proceedings, 2001, 33, 264-265.	0.6	8
15	HO-1 upregulation protects the pancreatic cell line Î ² TC3 from cytokines and Fas-induced apoptosis. Transplantation Proceedings, 2001, 33, 266-267.	0.6	12
16	Absence of M-CSF–dependent tissue macrophages does not improve delayed function of islet of Langerhans grafts. Transplantation Proceedings, 2001, 33, 356-357.	0.6	0
17	Induced Heme Oxygenase-1 Upregulation Protects Pancreatic Beta Cells from Apoptosis In Vitro. Scientific World Journal, The, 2001, 1, 108-108.	2.1	2
18	Automated Method for Isolation of Adrenal Medullary Chromaffin Cells from Neonatal Porcine Glands. Cell Transplantation, 2001, 10, 689-696.	2.5	5

#	Article	IF	CITATIONS
19	ENDOTOXIN-MEDIATED DELAYED ISLET GRAFT FUNCTION IS ASSOCIATED WITH INCREASED INTRA-ISLET CYTOKINE PRODUCTION AND ISLET CELL APOPTOSIS1. Transplantation, 2001, 71, 125-131.	1.0	121
20	EARLY ASSESSMENT OF APOPTOSIS IN ISOLATED ISLETS OF LANGERHANS1. Transplantation, 2001, 71, 857-862.	1.0	63
21	Transcriptional reprogramming of dendritic cells by differentiation stimuli. European Journal of Immunology, 2001, 31, 2539-2546.	2.9	129
22	Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunology, 2001, 2, 882-888.	14.5	449
23	Prolonged Islet Graft Survival in NOD Mice by Blockade of the CD40-CD154 Pathway of T-Cell Costimulation. Diabetes, 2001, 50, 270-276.	0.6	94
24	Heme Oxygenase-1 Induction in Islet Cells Results in Protection From Apoptosis and Improved In Vivo Function After Transplantation. Diabetes, 2001, 50, 1983-1991.	0.6	241
25	Absence of CSF-1-Dependent Macrophages Does Not Improve Function of Transplanted Islets of Langerhans. Cell Transplantation, 2001, 10, 633-637.	2.5	4
26	Transcriptional reprogramming of dendritic cells by differentiation stimuli. European Journal of Immunology, 2001, 31, 2539-46.	2.9	31
27	Transcriptional reprogramming of dendritic cells by differentiation stimuli. European Journal of Immunology, 2001, 31, 2539.	2.9	5
28	Induced Heme Oxygenase-1 upregulation protects pancreatic beta cells from apoptosis in vitro. Scientific World Journal, The, 2001, 1, 108-108.	2.1	1
29	Absence of CSF-1-dependent macrophages does not improve function of transplanted islets of Langerhans. Cell Transplantation, 2001, 10, 633-7.	2.5	2
30	Automated method for isolation of adrenal medullary chromaffin cells from neonatal porcine glands. Cell Transplantation, 2001, 10, 689-96.	2.5	1
31	Current indications and limits of pancreatic islet transplantation in diabetic nephropathy. Journal of Nephrology, 1997, 10, 245-52.	2.0	8
32	The Regulatory Role of Dendritic Cells in the Innate Immune Response. , 0, , 95-109.		2