Shay Mozes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041727/publications.pdf Version: 2024-02-01

Shav Mozes

#	Article	IF	CITATIONS
1	An optimal decomposition algorithm for tree edit distance. ACM Transactions on Algorithms, 2009, 6, 1-19.	1.0	108
2	Deterministic dense coding with partially entangled states. Physical Review A, 2005, 71, .	2.5	61
3	Shortest paths in directed planar graphs with negative lengths. ACM Transactions on Algorithms, 2010, 6, 1-18.	1.0	58
4	An Optimal Decomposition Algorithm for Tree Edit Distance. Lecture Notes in Computer Science, 2007, , 146-157.	1.3	51
5	Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time. , 2011, , .		37
6	Effect of unitary noise on Grover's quantum search algorithm. Physical Review A, 2003, 67, .	2.5	30
7	Structured recursive separator decompositions for planar graphs in linear time. , 2013, , .		30
8	Shortest Paths in Planar Graphs with Real Lengths in O(nlog2 n/loglogn) Time. Lecture Notes in Computer Science, 2010, , 206-217.	1.3	30
9	Speeding Up HMM Decoding and Training by Exploiting Sequence Repetitions. Algorithmica, 2009, 54, 379-399.	1.3	27
10	Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs in Near-Linear Time. SIAM Journal on Computing, 2017, 46, 1280-1303.	1.0	27
11	Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (Unless APSP Can). ACM Transactions on Algorithms, 2020, 16, 1-22.	1.0	20
12	New construction for a QMA complete three-local Hamiltonian. Journal of Mathematical Physics, 2007, 48, 072104.	1.1	18
13	Exact Distance Oracles for Planar Graphs. , 2012, , .		16
14	Submatrix maximum queries in Monge matrices and Monge partial matrices, and their applications. , 2012, , .		13
15	Better Tradeoffs for Exact Distance Oracles in Planar Graphs. , 2018, , 515-529.		13
16	Almost optimal distance oracles for planar graphs. , 2019, , .		12
17	Speeding Up HMM Decoding and Training by Exploiting Sequence Repetitions. Lecture Notes in Computer Science, 2007, , 4-15.	1.3	12
18	Submatrix Maximum Queries in Monge Matrices and Partial Monge Matrices, and Their Applications. ACM Transactions on Algorithms, 2017, 13, 1-42.	1.0	11

#	Article	IF	CITATIONS
19	Voronoi Diagrams on Planar Graphs, and Computing the Diameter in Deterministic <i>Õ</i> (<i>n</i> ^{5/3}) Time. , 2018, , 495-514.		9
20	Tree Edit Distance Cannot be Computed in Strongly Subcubic Time (unless APSP can). , 2018, , 1190-1206.		9
21	A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection. , 2015, , .		7
22	Compressed range minimum queries. Theoretical Computer Science, 2020, 812, 39-48.	0.9	6
23	Shortest Paths in Directed Planar Graphs with Negative Lengths: a Linear-Space <i>O</i> (<i>n</i>) Tj ETQq1 1 (0.784314 r	gBT /Overloc
24	Exact Distance Oracles for Planar Graphs with Failing Vertices. , 2019, , 2110-2123.		6
25	Efficient algorithms for analyzing segmental duplications with deletions and inversions in genomes. Algorithms for Molecular Biology, 2010, 5, 11.	1.2	5
26	Voronoi Diagrams on Planar Graphs, and Computing the Diameter in Deterministic \$ilde{O}(n^{5/3})\$ Time. SIAM Journal on Computing, 2021, 50, 509-554.	1.0	5
27	The Train Delivery Problem - Vehicle Routing Meets Bin Packing. Lecture Notes in Computer Science, 2011, , 94-105.	1.3	5
28	Fast algorithms for computing tree LCS. Theoretical Computer Science, 2009, 410, 4303-4314.	0.9	4
29	Faster shortest paths in dense distance graphs, with applications. Theoretical Computer Science, 2018, 711, 11-35.	0.9	4
30	Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs in O(diameter · n log n) Time. Lecture Notes in Computer Science, 2011, , 571-582.	1.3	4
31	Near-Optimal Compression for the Planar Graph Metric. , 2018, , 530-549.		3
32	Efficient Vertex-Label Distance Oracles for Planar Graphs. Lecture Notes in Computer Science, 2015, , 97-109.	1.3	3
33	Short and Simple Cycle Separators in Planar Graphs. , 2013, , 26-40.		2
34	Minimum Cut of Directed Planar Graphs in O(n log log n) Time. , 2018, , 477-494.		2
35	Improved Submatrix Maximum Queries in Monge Matrices. Lecture Notes in Computer Science, 2014, , 525-537.	1.3	2

Fast Algorithms for Computing Tree LCS. , 2008, , 230-243.

Shay Mozes

#	Article	IF	CITATIONS
37	Exact Distance Oracles for Planar Graphs with Failing Vertices. ACM Transactions on Algorithms, 0, , .	1.0	2
38	Short and Simple Cycle Separators in Planar Graphs. Journal of Experimental Algorithmics, 2016, 21, 1-24.	1.0	1
39	Efficient Vertex-Label Distance Oracles for Planar Graphs. Theory of Computing Systems, 2018, 62, 419-440.	1.1	1
40	The nearest colored node in a tree. Theoretical Computer Science, 2018, 710, 66-73.	0.9	1
41	Submatrix Maximum Queries in Monge Matrices Are Equivalent to Predecessor Search. Lecture Notes in Computer Science, 2015, , 580-592.	1.3	1
42	Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs. Theory of Computing Systems, 2019, 63, 1849-1874.	1.1	0
43	Efficient Algorithms for Analyzing Segmental Duplications, Deletions, and Inversions in Genomes. Lecture Notes in Computer Science, 2009, , 169-180.	1.3	0
44	Recursive Separator Decompositions for Planar Graphs. , 2014, , 1-5.		0
45	Recursive Separator Decompositions for Planar Graphs. , 2016, , 1797-1801.		0
46	Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs. Lecture Notes in Computer Science, 2018, , 269-284.	1.3	0
47	Compressed Range Minimum Queries. Lecture Notes in Computer Science, 2018, , 206-217.	1.3	0
48	Fault-tolerant distance labeling for planar graphs. Theoretical Computer Science, 2022, , .	0.9	0