Mohammad Barmar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041725/publications.pdf

Version: 2024-02-01

516215 552369 37 736 16 26 citations g-index h-index papers 37 37 37 883 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improving the Sound Absorption Properties of Flexible Polyurethane (PU) Foam using Nanofibers and Nanoparticles. Sound and Vibration, 2019, 53, 207-222.	0.2	2
2	Rheological and electrical percolation thresholds of multiâ€walled carbon nanotube/inâ€situ polymerised Nylon12Ânanocomposites. Micro and Nano Letters, 2018, 13, 1594-1599.	0.6	1
3	The effect of MWCNT on dynamic mechanical properties and crystallinity of in situ polymerized polyamide 12 nanocomposite. Polymers for Advanced Technologies, 2018, 29, 2134-2146.	1.6	7
4	Polyamide/Carbon Nanoparticles Nanocomposites: A Review. Polymer Engineering and Science, 2017, 57, 475-494.	1.5	45
5	Polyurethane/aminoâ€grafted multiwalled carbon nanotube nanocomposites: Microstructure, thermal, mechanical, and rheological properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	12
6	New Sulfonated Waterborne Polyurethane Dispersions: Preparation and Characterization. Journal of Dispersion Science and Technology, 2016, 37, 1219-1225.	1.3	12
7	Synthesis and characterization of polyhedral oligomeric silsesquioxane-based waterborne polyurethane nanocomposites. Korean Journal of Chemical Engineering, 2016, 33, 319-329.	1.2	9
8	Study of thermal stability and degradation kinetics of polyurethane–ureas by thermogravimetry. Iranian Polymer Journal (English Edition), 2015, 24, 783-789.	1.3	12
9	Synthesis, characterization and properties of waterborne polyurethanes based on two different ionic centers. Fibers and Polymers, 2015, 16, 718-725.	1.1	28
10	Synthesis and investigation of thermal and mechanical properties of in situ prepared biocompatible Fe3O4/polyurethane elastomer nanocomposites. Polymer Bulletin, 2015, 72, 219-234.	1.7	39
11	Effect of organo-clay on properties and mechanical behavior of Fluorosilicone rubber. Fibers and Polymers, 2014, 15, 2376-2385.	1.1	26
12	An Investigation into the Effects of Different Nanoclays on Polyurethane Nanocomposites Properties. Polymer-Plastics Technology and Engineering, 2014, 53, 801-810.	1.9	14
13	A simple approach for morphology tailoring of alginate particles by manipulation ionic nature of polyurethanes. International Journal of Biological Macromolecules, 2014, 66, 212-220.	3.6	23
14	Siloxaneâ€based segmented poly(urethaneâ€urea) elastomer: Synthesis and characterization. Journal of Applied Polymer Science, 2013, 130, 1743-1751.	1.3	24
15	Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. Journal of Materials Science, 2013, 48, 7493-7502.	1.7	73
16	Modification of dicyandiamide-cured epoxy resin with different molecular weights of polyethylene glycol and its effect on epoxy/glass prepreg characteristics. High Performance Polymers, 2013, 25, 705-713.	0.8	17
17	Highly stretchable nanoalginate based polyurethane elastomers. Carbohydrate Polymers, 2013, 95, 630-636.	5.1	27
18	Compatible compositions based on aqueous polyurethane dispersions and sodium alginate. Carbohydrate Polymers, 2013, 92, 490-496.	5.1	73

#	Article	IF	CITATIONS
19	Study of the simultaneous effects of MMT nanoclay and hydrophobically modified ethoxylated urethane (HEUR) on viscoelastic and steady shear properties of water-based acrylic resins. Journal of Coatings Technology Research, 2013, 10, 727-731.	1.2	1
20	Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols. Korean Journal of Chemical Engineering, 2013, 30, 2093-2099.	1.2	14
21	Effect of polyol structure on the properties of the resultant magnetic polyurethane elastomer nanocomposites. Polymers for Advanced Technologies, 2013, 24, 978-985.	1.6	29
22	Isocyanate Modification of Wood Fiber in Enhancing the Performance of its Composites with High Density Polyethylene. Polymers From Renewable Resources, 2012, 3, 43-60.	0.8	7
23	Effect of NBR on epoxy/glass prepregs properties. Journal of Applied Polymer Science, 2012, 123, 1597-1603.	1.3	10
24	Investigating the Uni-HEUR thickener performance considering hydrophilic segment length. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 364, 105-108.	2.3	17
25	A Comparison of the Effect of Different Flame Retardants on the Compressive Strength and Fire Behaviour of Rigid Polyurethane Foams. Frontiers in Forests and Global Change, 2010, 29, 343-358.	0.6	13
26	Investigation of the Thickening Efficiency of HEUR on the Behavior of Two Different Latex Types. International Polymer Processing, 2009, 24, 218-222.	0.3	4
27	Study of the effect of PEG length in Uniâ€HEUR thickener behavior. Journal of Applied Polymer Science, 2009, 111, 1751-1754.	1.3	14
28	XRD studies of UV-irradiated chitin based polyurethane elastomers. Carbohydrate Polymers, 2009, 77, 54-58.	5.1	29
29	Surface characteristics of polyurethane elastomers based on chitin/1,4-butane diol blends. International Journal of Biological Macromolecules, 2009, 44, 182-185.	3.6	37
30	Effectiveness of heat protection of fabrics loaded with phase change materials. E-Polymers, 2009, 9, .	1.3	0
31	Micro and nano fibrils from polypropylene/nylon 6 blends. Journal of Applied Polymer Science, 2008, 108, 1473-1481.	1.3	8
32	Influence of a Reactive Organoclay on Polymerization and Properties of Polyurethane Nanocomposites. Polymer-Plastics Technology and Engineering, 2008, 48, 90-96.	1.9	8
33	Rheological Behavior of HEUR Mixtures in Aqueous Media. International Polymer Processing, 2007, 22, 146-150.	0.3	2
34	Investigating the effect of hydrophobic structural parameters on the thickening properties of HEUR associative copolymers. European Polymer Journal, 2005, 41, 619-626.	2.6	20
35	Steady shear viscosity study of various HEUR models with different hydrophilic and hydrophobic sizes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 77-82.	2.3	19
36	The steady state and dynamic rheological properties of telechelic associative polymer solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 254, 125-130.	2.3	22

3

#	Article	IF	CITATIONS
37	Influence of prepolymers molecular weight on the viscoelastic properties of aqueous HEUR solutions. Colloid and Polymer Science, 2004, 282, 454-460.	1.0	38