
Zeinab Hosseini-Doust

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Water-Soluble Anionic Polychloramide Biocides Based on Maleic Anhydride Copolymers. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112487.	5.0	4
2	Enhancing osseointegration and mitigating bacterial biofilms on medical-grade titanium with chitosan-conjugated liquid-infused coatings. Scientific Reports, 2022, 12, 5380.	3.3	10
3	Inducing Microscale Structural Order in Phage Nanofilament Hydrogels with Globular Proteins. ACS Biomaterials Science and Engineering, 2022, 8, 340-347.	5.2	9
4	Bacteriophageâ€built gels as platforms for biomedical applications. Canadian Journal of Chemical Engineering, 2022, 100, 2191-2203.	1.7	2
5	Emerging investigator series: bacteriophages as nano engineering tools for quality monitoring and pathogen detection in water and wastewater. Environmental Science: Nano, 2021, 8, 367-389.	4.3	21
6	Regenerating heavily biofouled dissolved oxygen sensors using bacterial viruses. RSC Advances, 2021, 11, 8346-8355.	3.6	0
7	Filamentous Phages as Building Blocks for Bioactive Hydrogels. ACS Applied Bio Materials, 2021, 4, 2262-2273.	4.6	14
8	Antibiotic-Impregnated Liquid-Infused Coatings Suppress the Formation of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilms. ACS Applied Materials & Interfaces, 2021, 13, 27774-27783.	8.0	18
9	Polysiloxane Nanofilaments Infused with Silicone Oil Prevent Bacterial Adhesion and Suppress Thrombosis on Intranasal Splints. ACS Biomaterials Science and Engineering, 2021, 7, 541-552.	5.2	21
10	Bacteria repellent protein hydrogel decorated with tunable, isotropic, nano-on-micro hierarchical microbump array. Chemical Communications, 2021, 57, 10883-10886.	4.1	3
11	Liposomes for Antibiotic Encapsulation and Delivery. ACS Infectious Diseases, 2020, 6, 896-908.	3.8	86
12	Preserving the Efficacy of Glycopeptide Antibiotics during Nanoencapsulation in Liposomes. ACS Infectious Diseases, 2019, 5, 1794-1801.	3.8	15
13	Liposomal Nanovesicles for Efficient Encapsulation of Staphylococcal Antibiotics. ACS Omega, 2019, 4, 10866-10876.	3.5	71
14	Hierarchically Structured, Self-Healing, Fluorescent, Bioactive Hydrogels with Self-Organizing Bundles of Phage Nanofilaments. Chemistry of Materials, 2019, 31, 5442-5449.	6.7	19
15	Biofunctional Lubricant-Infused Vascular Grafts Functionalized with Silanized Bio-Inks Suppress Thrombin Generation and Promote Endothelialization. ACS Biomaterials Science and Engineering, 2019, 5, 6485-6496.	5.2	32
16	Phage Therapy with a focus on the Human Microbiota. Antibiotics, 2019, 8, 131.	3.7	83
17	Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale, 2018, 10, 7171-7184.	5.6	75
18	Long-Term Preservation of Bacteriophage Antimicrobials Using Sugar Glasses. ACS Biomaterials Science and Engineering, 2018, 4, 3802-3808.	5.2	35

#	Article	IF	CITATIONS
19	Long-Term Antimicrobial Activity of Phage–Sugar Glasses is Closely Tied to the Processing Conditions. ACS Omega, 2018, 3, 18295-18303.	3.5	10
20	A New Label-Free Technique for Analysing Evaporation Induced Self-Assembly of Viral Nanoparticles Based on Enhanced Dark-Field Optical Imaging. Nanomaterials, 2018, 8, 1.	4.1	379
21	Phage-Mediated Gene Therapy. Current Gene Therapy, 2017, 17, 120-126.	2.0	12
22	One-pot green synthesis of anisotropic silver nanoparticles. Environmental Science: Nano, 2016, 3, 1259-1264.	4.3	21
23	Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale, 2015, 7, 16647-16657.	5.6	94
24	Polyphenolic Extract from Maple Syrup Potentiates Antibiotic Susceptibility and Reduces Biofilm Formation of Pathogenic Bacteria. Applied and Environmental Microbiology, 2015, 81, 3782-3792.	3.1	62
25	Alkaloids Modulate Motility, Biofilm Formation and Antibiotic Susceptibility of Uropathogenic Escherichia coli. PLoS ONE, 2014, 9, e112093.	2.5	39
26	Bacteria survival probability in bactericidal filter paper. Colloids and Surfaces B: Biointerfaces, 2014, 117, 383-388.	5.0	5
27	Investigating electrochemical removal of bacterial biofilms from stainless steel substrates. Colloids and Surfaces B: Biointerfaces, 2014, 117, 152-157.	5.0	39
28	Effects of Environmental and Clinical Interferents on the Host Capture Efficiency of Immobilized Bacteriophages. Langmuir, 2014, 30, 3184-3190.	3.5	18
29	Going viral: Designing bioactive surfaces with bacteriophage. Colloids and Surfaces B: Biointerfaces, 2014, 124, 2-16.	5.0	69
30	Predation in Homogeneous and Heterogeneous Phage Environments Affects Virulence Determinants of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2013, 79, 2862-2871.	3.1	51
31	Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling, 2013, 29, 457-468.	2.2	74
32	Evolution of Pseudomonas aeruginosa Virulence as a Result of Phage Predation. Applied and Environmental Microbiology, 2013, 79, 6110-6116.	3.1	74
33	Bacterial Capture Efficiency and Antimicrobial Activity of Phage-Functionalized Model Surfaces. Langmuir, 2011, 27, 5472-5480.	3.5	62