
Chun-Che Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041252/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in Phosphors for Light-emitting Diodes. Journal of Physical Chemistry Letters, 2011, 2, 1268-1277.	2.1	1,099
2	Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature Communications, 2014, 5, 4312.	5.8	1,069
3	Light Converting Inorganic Phosphors for White Light-Emitting Diodes. Materials, 2010, 3, 2172-2195.	1.3	480
4	Critical Red Components for Next-Generation White LEDs. Journal of Physical Chemistry Letters, 2016, 7, 495-503.	2.1	401
5	Versatile Phosphate Phosphors ABPO ₄ in White Light-Emitting Diodes: Collocated Characteristic Analysis and Theoretical Calculations. Journal of the American Chemical Society, 2010, 132, 3020-3028.	6.6	324
6	Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes. Applied Physics Letters, 2007, 90, 151108.	1.5	313
7	Highly Efficient Blue Emission and Superior Thermal Stability of BaAl ₁₂ O ₁₉ :Eu ²⁺ Phosphors Based on Highly Symmetric Crystal Structure. Chemistry of Materials, 2018, 30, 2389-2399.	3.2	302
8	Photoluminescence Tuning via Cation Substitution in Oxonitridosilicate Phosphors: DFT Calculations, Different Site Occupations, and Luminescence Mechanisms. Chemistry of Materials, 2014, 26, 2991-3001.	3.2	244
9	Enhanced Photoluminescence Emission and Thermal Stability from Introduced Cation Disorder in Phosphors. Journal of the American Chemical Society, 2017, 139, 11766-11770.	6.6	190
10	Synthesis of Na ₂ SiF ₆ :Mn ⁴⁺ red phosphors for white LED applications by co-precipitation. Journal of Materials Chemistry C, 2014, 2, 10268-10272.	2.7	187
11	A low-temperature co-precipitation approach to synthesize fluoride phosphors K ₂ MF ₆ :Mn ⁴⁺ (M = Ge, Si) for white LED applications. Journal of Materials Chemistry C, 2015, 3, 1655-1660.	2.7	182
12	Waterproof Alkyl Phosphate Coated Fluoride Phosphors for Optoelectronic Materials. Angewandte Chemie - International Edition, 2015, 54, 10862-10866.	7.2	160
13	Green Light-Excitable Ce-Doped Nitridomagnesoaluminate Sr[Mg ₂ Al ₂ N ₄] Phosphor for White Light-Emitting Diodes. Chemistry of Materials, 2016, 28, 6822-6825.	3.2	138
14	Heterostructure of Si and CoSe ₂ : A Promising Photocathode Based on a Nonâ€noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 6211-6216.	7.2	134
15	Photoluminescent Evolution Induced by Structural Transformation Through Thermal Treating in the Red Narrow-Band Phosphor K ₂ GeF ₆ :Mn ⁴⁺ . ACS Applied Materials & Interfaces, 2015, 7, 10656-10659.	4.0	133
16	Novel Fluorescence Sensor Based on All-Inorganic Perovskite Quantum Dots Coated with Molecularly Imprinted Polymers for Highly Selective and Sensitive Detection of Omethoate. ACS Applied Materials & Interfaces, 2018, 10, 39056-39063.	4.0	123
17	Water-Resistant Efficient Stretchable Perovskite-Embedded Fiber Membranes for Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 2210-2215.	4.0	113
18	Near-ultraviolet excitable orange-yellow Sr3(Al2O5)Cl2:Eu2+ phosphor for potential application in light-emitting diodes. Applied Physics Letters, 2008, 93, .	1.5	103

CHUN-CHE LIN

#	Article	IF	CITATIONS
19	(Ba,Sr)Y2Si2Al2O2N5 : Eu2+: a novel near-ultraviolet converting green phosphor for white light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 3740.	6.7	100
20	Preparation of a novel red Rb ₂ SiF ₆ :Mn ⁴⁺ phosphor with high thermal stability through a simple one-step approach. Journal of Materials Chemistry C, 2015, 3, 7277-7280.	2.7	98
21	Evaluations of the Chemical Stability and Cytotoxicity of CuInS ₂ and CuInS ₂ /ZnS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2015, 119, 2852-2860.	1.5	77
22	Multi-Bandgap-Sensitized ZnO Nanorod Photoelectrode Arrays for Water Splitting: An X-ray Absorption Spectroscopy Approach for the Electronic Evolution under Solar Illumination. Journal of Physical Chemistry C, 2011, 115, 21971-21980.	1.5	67
23	Effects of additional Ce3+ doping on the luminescence of Li2SrSiO4:Eu2+ yellow phosphor. Applied Physics Letters, 2010, 96, .	1.5	65
24	UV/VUV switch-driven color-reversal effect for Tb-activated phosphors. Light: Science and Applications, 2016, 5, e16066-e16066.	7.7	57
25	Highly efficient fluorescent QDs sensor for specific detection of protein through double recognition of hybrid aptamer-molecular imprinted polymers. Sensors and Actuators B: Chemical, 2018, 274, 627-635.	4.0	53
26	Novel ultra-stable and highly luminescent white light-emitting diodes from perovskite quantum dots—Polymer nanofibers through biaxial electrospinning. APL Materials, 2019, 7, .	2.2	42
27	Superior thermally-stable narrow-band green emitter from Mn2+-doped zero thermal expansion (ZTE) material. Chemical Engineering Journal, 2021, 415, 128979.	6.6	42
28	Controllable Eu valence for photoluminescence tuning in apatite-typed phosphors by the cation cosubstitution effect. Chemical Communications, 2016, 52, 7376-7379.	2.2	38
29	Controllable Eu ²⁺ -Doped Orthophosphate Blue-/Red-Emitting Phosphors: Charge Compensation and Lattice-Strain Control. Inorganic Chemistry, 2019, 58, 6376-6387.	1.9	36
30	All-In-One Light-Tunable Borated Phosphors with Chemical and Luminescence Dynamical Control Resolution. ACS Applied Materials & amp; Interfaces, 2014, 6, 9160-9172.	4.0	32
31	Pressure effect on the zero-phonon line emission of Mn4+ in K2SiF6. Journal of Chemical Physics, 2015, 143, 134704.	1.2	29
32	Melilite-type blue chromophores based on Mn3+ in a trigonal-bipyramidal coordination induced by interstitial oxygen. Journal of Materials Chemistry C, 2013, 1, 5843.	2.7	24
33	Phase transition and energy transfer of lead-free Cs ₂ SnCl ₆ perovskite nanocrystals by controlling the precursors and doping manganese ions. Journal of Information Display, 2019, 20, 209-216.	2.1	19
34	Mechanism of light emission and electronic properties of a Eu3+-doped Bi2SrTa2O9 system determined by coupled X-ray absorption and emission spectroscopy. Journal of Materials Chemistry, 2011, 21, 17119.	6.7	17
35	Cr ³⁺ -Sphere Effect on the Whitlockite-Type NIR Phosphor Sr ₉ Sc(PO ₄) ₇ with High Heat Dissipation for Digital Medical Applications. Inorganic Chemistry, 2022, 61, 2530-2537.	1.9	17
36	Spiralâ€Type Heteropolyhedral Coordination Network Based on Singleâ€Crystal LiSrPO ₄ : Implications for Luminescent Materials. Chemistry - A European Journal, 2013, 19, 15358-15365.	1.7	14

CHUN-CHE LIN

#	Article	IF	CITATIONS
37	A rare earth-free GaZnON phosphor prepared by combustion for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 1473-1479.	2.7	12
38	Light Down-Converter Based on Luminescent Nanofibers from the Blending of Conjugated Rod-Coil Block Copolymers and Perovskite through Electrospinning. Polymers, 2020, 12, 84.	2.0	10
39	Enhancing the Color Rendering Index for Phosphor onverted White LEDs Using Cadmiumâ€Free CuInS2/ZnS QDs. Journal of the Chinese Chemical Society, 2013, 60, 801-806.	0.8	8
40	Lead-free Rb ₂ SnCl ₆ :Bi Perovskite Nanocrystals for Luminescence Emission. ACS Applied Nano Materials, 2022, 5, 7580-7587.	2.4	8
41	Formation of Sr ₂ Si ₅ N ₈ :Eu ²⁺ and Its Transformation to SrSi ₆ N ₈ :Eu ²⁺ ControlledÂby Temperature and Gas Pressure. Journal of the American Ceramic Society, 2015, 98, 2662-2669.	1.9	4
42	Facile dental resin composites with tunable fluorescence by tailoring Cd-free quantum dots. RSC Advances, 2013, 3, 16639.	1.7	3
43	Green route synthesis of K2SiF6:Mn4+ red phosphor through a brief one-step co-precipitation method for warm white light LEDs. Journal of Materials Science: Materials in Electronics, 2022, 33, 2204-2212.	1.1	3
44	Innenrücktitelbild: Heterostructure of Si and CoSe2: A Promising Photocathode Based on a Non-noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution (Angew. Chem. 21/2015). Angewandte Chemie, 2015, 127, 6469-6469.	1.6	0