
Adit Ben-Baruch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2041069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tumor Cell-Autonomous Pro-Metastatic Activities of PD-L1 in Human Breast Cancer Are Mediated by PD-L1-S283 and Chemokine Axes. Cancers, 2022, 14, 1042.	3.7	7
2	Tumor Necrosis Factor α: Taking a Personalized Road in Cancer Therapy. Frontiers in Immunology, 2022, 13, .	4.8	12
3	Persistent Inflammatory Stimulation Drives the Conversion of MSCs to Inflammatory CAFs That Promote Pro-Metastatic Characteristics in Breast Cancer Cells. Cancers, 2021, 13, 1472.	3.7	25
4	Continuous Inflammatory Stimulation Leads via Metabolic Plasticity to a Prometastatic Phenotype in Triple-Negative Breast Cancer Cells. Cells, 2021, 10, 1356.	4.1	6
5	Chemotherapy Shifts the Balance in Favor of CD8+ TNFR2+ TILs in Triple-Negative Breast Tumors. Cells, 2021, 10, 1429.	4.1	5
6	Partners in crime: TNFα-based networks promoting cancer progression. Cancer Immunology, Immunotherapy, 2020, 69, 263-273.	4.2	9
7	Beyond Cell Motility: The Expanding Roles of Chemokines and Their Receptors in Malignancy. Frontiers in Immunology, 2020, 11, 952.	4.8	82
8	TNFR2+ TILs are significantly associated with improved survival in triple-negative breast cancer patients. Cancer Immunology, Immunotherapy, 2020, 69, 1315-1326.	4.2	10
9	Notch-Inflammation Networks in Regulation of Breast Cancer Progression. Cells, 2020, 9, 1576.	4.1	11
10	Inflammation-Driven Breast Tumor Cell Plasticity: Stemness/EMT, Therapy Resistance and Dormancy. Frontiers in Oncology, 2020, 10, 614468.	2.8	38
11	NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis. Nature Communications, 2019, 10, 4375.	12.8	190
12	Notch-Mediated Tumor-Stroma-Inflammation Networks Promote Invasive Properties and CXCL8 Expression in Triple-Negative Breast Cancer. Frontiers in Immunology, 2019, 10, 804.	4.8	65
13	Tumor-Stroma-Inflammation Networks Promote Pro-metastatic Chemokines and Aggressiveness Characteristics in Triple-Negative Breast Cancer. Frontiers in Immunology, 2019, 10, 757.	4.8	119
14	Co-Inflammatory Roles of TGFβ1 in the Presence of TNFα Drive a Pro-inflammatory Fate in Mesenchymal Stem Cells. Frontiers in Immunology, 2017, 8, 479.	4.8	27
15	miRNA-1246 induces pro-inflammatory responses in mesenchymal stem/stromal cells by regulating PKA and PP2A. Oncotarget, 2017, 8, 43897-43914.	1.8	63
16	Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups. Breast Cancer Research, 2016, 18, 74.	5.0	75
17	Chemokine axes in breast cancer: factors of the tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors. Journal of Leukocyte Biology, 2016, 99, 1009-1025.	3.3	30
18	Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget, 2016, 7, 81123-81143.	1.8	23

ADIT BEN-BARUCH

#	Article	IF	CITATIONS
19	Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-κB pathway. Stem Cell Research and Therapy, 2015, 6, 87.	5.5	108
20	Breast Cancer: Coordinated Regulation of CCL2 Secretion by Intracellular Glycosaminoglycans and Chemokine Motifs. Neoplasia, 2014, 16, 723-740.	5.3	10
21	The inflammatory cytokine TNFÎ \pm cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells. BMC Cancer, 2014, 14, 158.	2.6	16
22	The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Letters, 2014, 352, 36-53.	7.2	124
23	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	16.0	735
24	Inflammatory Factors of the Tumor Microenvironment Induce Plasticity in Nontransformed Breast Epithelial Cells: EMT, Invasion, and Collapse of Normally Organized Breast Textures. Neoplasia, 2013, 15, 1330-IN5.	5.3	55
25	Progression of Luminal Breast Tumors Is Promoted by Ménage à Trois between the Inflammatory Cytokine TNF <i>î±</i> and the Hormonal and Growth-Supporting Arms of the Tumor Microenvironment. Mediators of Inflammation, 2013, 2013, 1-19.	3.0	17
26	The Versatile World of Inflammatory Chemokines in Cancer. , 2013, , 135-175.		1
27	Tumor-Promoting Circuits That Regulate a Cancer-Related Chemokine Cluster: Dominance of Inflammatory Mediators Over Oncogenic Alterations. Cancers, 2012, 4, 55-76.	3.7	4
28	Mechanisms Regulating the Secretion of the Promalignancy Chemokine CCL5 by Breast Tumor Cells: CCL5's 40s Loop and Intracellular Glycosaminoglycans. Neoplasia, 2012, 14, 1-IN3.	5.3	17
29	The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines. Cancer Microenvironment, 2012, 5, 151-164.	3.1	55
30	Epidermal Growth Factor and Estrogen Act by Independent Pathways to Additively Promote the Release of the Angiogenic Chemokine CXCL8 by Breast Tumor Cells. Neoplasia, 2011, 13, 230-243.	5.3	25
31	Inflammatory mediators in breast cancer: Coordinated expression of TNFα & IL-1β with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer, 2011, 11, 130.	2.6	229
32	Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. Journal of Leukocyte Biology, 2010, 89, 31-39.	3.3	197
33	Chapter 1 Chemokines in Human Breast Tumor Cells. Methods in Enzymology, 2009, 460, 3-16.	1.0	2
34	Site-specific metastasis formation. Cell Adhesion and Migration, 2009, 3, 328-333.	2.7	55
35	The CCL5/CCR5 Axis in Cancer. , 2009, , 109-130.		11
36	Organ selectivity in metastasis: regulation by chemokines and their receptors. Clinical and Experimental Metastasis, 2008, 25, 345-356.	3.3	235

ADIT BEN-BARUCH

#	Article	IF	CITATIONS
37	Intracellular cross-talk between the GPCR CXCR1 and CXCR2: Role of carboxyl terminus phosphorylation sites. Experimental Cell Research, 2008, 314, 352-365.	2.6	12
38	The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Letters, 2008, 267, 271-285.	7.2	502
39	Concomitant expression of the chemokines RANTES and MCP-1 in human breast cancer: A basis for tumor-promoting interactions. Cytokine, 2008, 44, 191-200.	3.2	83
40	CXCL8-induced FAK phosphorylation via CXCR1 and CXCR2: Cytoskeleton- and integrin-related mechanisms converge with FAK regulatory pathways in a receptor-specific manner. Cytokine, 2006, 33, 1-16.	3.2	43
41	The Chemokine CCL5 as a Potential Prognostic Factor Predicting Disease Progression in Stage II Breast Cancer Patients. Clinical Cancer Research, 2006, 12, 4474-4480.	7.0	131
42	The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors. Cancer Letters, 2005, 217, 73-86.	7.2	51
43	The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines. Immunology Letters, 2004, 92, 171-178.	2.5	85
44	Progression of mouse mammary tumors: MCP-1-TNF? cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. International Journal of Cancer, 2003, 106, 879-886.	5.1	62
45	IL-8-Induced Migratory Responses through CXCR1 and CXCR2: Association with Phosphorylation and Cellular Redistribution of Focal Adhesion Kinaseâ€. Biochemistry, 2003, 42, 2874-2886.	2.5	49
46	Intracellular trafficking of human CXCR1 and CXCR2: regulation by receptor domains and actin-related kinases. European Journal of Immunology, 2002, 32, 3525-3535.	2.9	20
47	The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Research, 2002, 62, 1093-102.	0.9	237
48	Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2. Journal of Immunology, 2001, 166, 1272-1284.	0.8	50
49	A Possible Role for CXCR4 and Its Ligand, the CXC Chemokine Stromal Cell-Derived Factor-1, in the Development of Bone Marrow Metastases in Neuroblastoma. Journal of Immunology, 2001, 167, 4747-4757.	0.8	370
50	GCP-2–induced internalization of IL-8 receptors: hierarchical relationships between GCP-2 and other ELR+-CXC chemokines and mechanisms regulating CXCR2 internalization and recycling. Blood, 2000, 95, 1551-1559.	1.4	58
51	MCP-1 expression as a potential contributor to the high malignancy phenotype of murine mammary adenocarcinoma cells. Immunology Letters, 1999, 68, 141-146.	2.5	35
52	DIFFERENTIAL MODES OF REGULATION OF CXC CHEMOKINE-INDUCED INTERNALIZATION AND RECYCLING OF HUMAN CXCR1 AND CXCR2. Cytokine, 1999, 11, 996-1009.	3.2	80
53	Differential usage of the CXC chemokine receptors 1 and 2 by interleukinâ€8, granulocyte chemotactic proteinâ€2 and epithelialâ€cellâ€derived neutrophil attractantâ€78. FEBS Journal, 1998, 255, 67-73.	0.2	133
54	Characterization of Synthetic Human Granulocyte Chemotactic Protein 2:Â Usage of Chemokine Receptors CXCR1 and CXCR2 andin VivoInflammatory Propertiesâ€. Biochemistry, 1997, 36, 2716-2723.	2.5	145

#	Article	IF	CITATIONS
55	Interleukin-8 Receptor β. Journal of Biological Chemistry, 1995, 270, 9121-9128.	3.4	67