
Davide Alberto Chiumello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2040835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA - Journal of the American Medical Association, 2020, 323, 1574.	3.8	4,411
2	Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome. New England Journal of Medicine, 2006, 354, 1775-1786.	13.9	4,002
3	Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: A multiple-center epidemiological study*. Critical Care Medicine, 2005, 33, 315-322.	0.4	1,885
4	COVID-19 pneumonia: different respiratory treatments for different phenotypes?. Intensive Care Medicine, 2020, 46, 1099-1102.	3.9	1,443
5	Prevalence of intra-abdominal hypertension in critically ill patients: a multicentre epidemiological study. Intensive Care Medicine, 2004, 30, 822-829.	3.9	1,188
6	COVID-19 Does Not Lead to a "Typical―Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1299-1300.	2.5	1,138
7	Lung Stress and Strain during Mechanical Ventilation for Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 346-355.	2.5	633
8	Ventilator-related causes of lung injury: the mechanical power. Intensive Care Medicine, 2016, 42, 1567-1575.	3.9	586
9	Mechanical Ventilation Affects Local and Systemic Cytokines in an Animal Model of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 109-116.	2.5	500
10	The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 520-531.	2.5	443
11	Optoelectronic Plethysmography in Intensive Care Patients. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 1546-1552.	2.5	397
12	Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Medicine, 2016, 42, 1360-1373.	3.9	352
13	Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 578-586.	2.5	287
14	Lung Inhomogeneity in Patients with Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 149-158.	2.5	277
15	Decrease in Paco2 with prone position is predictive of improved outcome in acute respiratory distress syndrome*. Critical Care Medicine, 2003, 31, 2727-2733.	0.4	247
16	Noninvasive Positive Pressure Ventilation Using a Helmet in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Anesthesiology, 2004, 100, 16-24.	1.3	208
17	Assessment of Lung Aeration and Recruitment by CT Scan and Ultrasound in Acute Respiratory Distress Syndrome Patients*. Critical Care Medicine, 2018, 46, 1761-1768.	0.4	188
18	Non-invasive ventilation in postoperative patients: a systematic review. Intensive Care Medicine, 2011, 37, 918-929.	3.9	186

DAVIDE ALBERTO CHIUMELLO

#	Article	IF	CITATIONS
19	Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Critical Care, 2004, 8, 350.	2.5	181
20	Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Medicine, 2020, 46, 2187-2196.	3.9	169
21	Compartmental Analysis of Breathing in the Supine and Prone Positions by Optoelectronic Plethysmography. Annals of Biomedical Engineering, 2001, 29, 60-70.	1.3	150
22	Bedside Selection of Positive End-Expiratory Pressure in Mild, Moderate, and Severe Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2014, 42, 252-264.	0.4	138
23	Airway driving pressure and lung stress in ARDS patients. Critical Care, 2016, 20, 276.	2.5	129
24	Sigh in Supine and Prone Position during Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 521-527.	2.5	120
25	Noninvasive positive pressure ventilation delivered by helmet vs. standard face mask. Intensive Care Medicine, 2003, 29, 1671-1679.	3.9	118
26	Lung Recruitment Assessed by Respiratory Mechanics and Computed Tomography in Patients with Acute Respiratory Distress Syndrome. What Is the Relationship?. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1254-1263.	2.5	111
27	Helmet CPAP to Treat Acute Hypoxemic Respiratory Failure in Patients with COVID-19: A Management Strategy Proposal. Journal of Clinical Medicine, 2020, 9, 1191.	1.0	110
28	Current Concepts of ARDS: A Narrative Review. International Journal of Molecular Sciences, 2017, 18, 64.	1.8	105
29	Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Critical Care, 2008, 12, R150.	2.5	104
30	Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome*. Critical Care Medicine, 2008, 36, 669-675.	0.4	102
31	Noninvasive ventilation in chest trauma: systematic review and meta-analysis. Intensive Care Medicine, 2013, 39, 1171-1180.	3.9	101
32	Extracorporeal life support as bridge to lung transplantation: a systematic review. Critical Care, 2015, 19, 19.	2.5	100
33	First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiologica, 2020, 86, 678-679.	0.6	99
34	Opening pressures and atelectrauma in acute respiratory distress syndrome. Intensive Care Medicine, 2017, 43, 603-611.	3.9	96
35	End-of-life care in the intensive care unit: Report from the Task Force of World Federation of Societies of Intensive and Critical Care Medicine. Journal of Critical Care, 2016, 34, 125-130.	1.0	92
36	Diagnostic workup for ARDS patients. Intensive Care Medicine, 2016, 42, 674-685.	3.9	89

#	Article	IF	CITATIONS
37	Reclassifying Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1586-1595.	2.5	87
38	Severe hypoxemia: which strategy to choose. Critical Care, 2016, 20, 132.	2.5	86
39	Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Critical Care Medicine, 2003, 31, 2604-2610.	0.4	85
40	Respiratory support in patients with acute respiratory distress syndrome: an expert opinion. Critical Care, 2017, 21, 240.	2.5	84
41	COVID-19 pneumonia: pathophysiology and management. European Respiratory Review, 2021, 30, 210138.	3.0	84
42	The assessment of transpulmonary pressure in mechanically ventilated ARDS patients. Intensive Care Medicine, 2014, 40, 1670-1678.	3.9	79
43	What's Next After ARDS: Long-Term Outcomes. Respiratory Care, 2016, 61, 689-699.	0.8	76
44	Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Critical Care Medicine, 2003, 31, S300-S304.	0.4	74
45	Effect of mechanical power on intensive care mortality in ARDS patients. Critical Care, 2020, 24, 246.	2.5	73
46	Bedside calculation of mechanical power during volume- and pressure-controlled mechanical ventilation. Critical Care, 2020, 24, 417.	2.5	71
47	Clinical review: Humidifiers during non-invasive ventilation - key topics and practical implications. Critical Care, 2011, 16, 203.	2.5	70
48	Decreased serum level of sphingosineâ€1â€phosphate: a novel predictor of clinical severity in COVIDâ€19. EMBO Molecular Medicine, 2021, 13, e13424.	3.3	70
49	Effect of different cycling-off criteria and positive end-expiratory pressure during pressure support ventilation in patients with chronic obstructive pulmonary disease*. Critical Care Medicine, 2007, 35, 2547-2552.	0.4	69
50	Mechanical power at a glance: a simple surrogate for volume-controlled ventilation. Intensive Care Medicine Experimental, 2019, 7, 61.	0.9	65
51	Clinical review: Helmet and non-invasive mechanical ventilation in critically ill patients. Critical Care, 2013, 17, 223.	2.5	62
52	Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure. Intensive Care Medicine, 2009, 35, 1011-1017.	3.9	61
53	Limits of normality of quantitative thoracic CT analysis. Critical Care, 2013, 17, R93.	2.5	61
54	Effects of thoraco-pelvic supports during prone position in patients with acute lung injury/acute respiratory distress syndrome: a physiological study. Critical Care, 2006, 10, R87.	2.5	60

#	Article	IF	CITATIONS
55	Fluid administration and monitoring in ARDS: which management?. Intensive Care Medicine, 2020, 46, 2252-2264.	3.9	60
56	Lung Recruitability Is Better Estimated According to the Berlin Definition of Acute Respiratory Distress Syndrome at Standard 5 cm H2O Rather Than Higher Positive End-Expiratory Pressure. Critical Care Medicine, 2015, 43, 781-790.	0.4	59
57	Global and Regional Diagnostic Accuracy of Lung Ultrasound Compared to CT in Patients With Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2019, 47, 1599-1606.	0.4	58
58	Compressive Forces and Computed Tomography–derived Positive End-expiratory Pressure in Acute Respiratory Distress Syndrome. Anesthesiology, 2014, 121, 572-581.	1.3	58
59	Effect of a heated humidifier during continuous positive airway pressure delivered by a helmet. Critical Care, 2008, 12, R55.	2.5	54
60	Brainstem neuropathology in two cases of COVID-19: SARS-CoV-2 trafficking between brain and lung. Journal of Neurology, 2021, 268, 4486-4491.	1.8	53
61	Clinical review: Lung imaging in acute respiratory distress syndrome patients - an update. Critical Care, 2013, 17, 243.	2.5	52
62	Role of total lung stress on the progression of early COVID-19 pneumonia. Intensive Care Medicine, 2021, 47, 1130-1139.	3.9	51
63	The Acute Respiratory Distress Syndrome: Diagnosis and Management. , 2019, , 189-204.		50
64	Lung inhomogeneities, inflation and [¹⁸ F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome. European Respiratory Journal, 2016, 47, 233-242.	3.1	48
65	Estimation of end-expiratory lung volume variations by optoelectronic plethysmography. Critical Care Medicine, 2001, 29, 1807-1811.	0.4	45
66	Case of Exogenous Lipoid Pneumonia: Steroid Therapy and Lung Lavage with an Emulsifier. Anesthesiology, 2006, 104, 197-198.	1.3	45
67	The effect of different volumes and temperatures of saline on the bladder pressure measurement in critically ill patients. Critical Care, 2007, 11, R82.	2.5	42
68	Pleural Effusion in Patients With Acute Lung Injury. Critical Care Medicine, 2013, 41, 935-944.	0.4	42
69	Prone Position in COVID-19 and -COVID-19 Acute Respiratory Distress Syndrome: An International Multicenter Observational Comparative Study*. Critical Care Medicine, 2022, 50, 633-643.	0.4	42
70	Declining Mortality in Patients With Acute Respiratory Distress Syndrome: An Analysis of the Acute Respiratory Distress Syndrome Network Trials. Critical Care Medicine, 2019, 47, 315-323.	0.4	39
71	Chest wall mechanics during pressure support ventilation. Critical Care, 2006, 10, R54.	2.5	38
72	Visual anatomical lung CT scan assessment of lung recruitability. Intensive Care Medicine, 2013, 39, 66-73.	3.9	37

#	Article	IF	CITATIONS
73	Respiratory mechanics and lung stress/strain in children with acute respiratory distress syndrome. Annals of Intensive Care, 2016, 6, 11.	2.2	37
74	A validation study of a new nasogastric polyfunctional catheter. Intensive Care Medicine, 2011, 37, 791-795.	3.9	35
75	Oesophageal pressure and respiratory muscle ultrasonographic measurements indicate inspiratory effort during pressure support ventilation. British Journal of Anaesthesia, 2020, 125, e148-e157.	1.5	35
76	Effect of body mass index in acute respiratory distress syndrome. British Journal of Anaesthesia, 2016, 116, 113-121.	1.5	34
77	The occlusion tests and end-expiratory esophageal pressure: measurements and comparison in controlled and assisted ventilation. Annals of Intensive Care, 2016, 6, 13.	2.2	33
78	Pathophysiology and Management of Acute Respiratory Distress Syndrome in Obese Patients. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 040-056.	0.8	33
79	Protective lung ventilation during general anesthesia: is there any evidence?. Critical Care, 2014, 18, 210.	2.5	32
80	Mortality and clinical outcomes in patients with COVID-19 pneumonia treated with non-invasive respiratory support: A rapid review. Journal of Critical Care, 2021, 65, 1-8.	1.0	31
81	Long-term outcomes in survivors of acute respiratory distress syndrome ventilated in supine or prone position. Intensive Care Medicine, 2012, 38, 221-229.	3.9	30
82	β-blockers in critically ill patients: from physiology to clinical evidence. Critical Care, 2015, 19, 119.	2.5	30
83	ERS statement on chest imaging in acute respiratory failure. European Respiratory Journal, 2019, 54, 1900435.	3.1	29
84	Respiratory Mechanics, Lung Recruitability, and Gas Exchange in Pulmonary and Extrapulmonary Acute Respiratory Distress Syndrome. Critical Care Medicine, 2019, 47, 792-799.	0.4	29
85	Low-dose chest computed tomography for quantitative and visual anatomical analysis in patients with acute respiratory distress syndrome. Intensive Care Medicine, 2014, 40, 691-699.	3.9	28
86	Link between serum lipid signature and prognostic factors in COVID-19 patients. Scientific Reports, 2021, 11, 21633.	1.6	28
87	Acute respiratory distress syndrome, the critical care paradigm: what we learned and what we forgot. Current Opinion in Critical Care, 2004, 10, 272-278.	1.6	27
88	Oxidative Stress Markers to Investigate the Effects of Hyperoxia in Anesthesia. International Journal of Molecular Sciences, 2019, 20, 5492.	1.8	27
89	Awake prone position reduces work of breathing in patients with COVID-19 ARDS supported by CPAP. Annals of Intensive Care, 2021, 11, 179.	2.2	26
90	Stress index in presence of pleural effusion: does it have any meaning?. Intensive Care Medicine, 2011, 37, 561-563.	3.9	24

#	Article	IF	CITATIONS
91	Pulmonary computed tomography and adult respiratory distress syndrome. Swiss Medical Weekly, 2005, 135, 169-74.	0.8	24
92	In vitro and in vivo evaluation of a new active heat moisture exchanger. Critical Care, 2004, 8, R281.	2.5	23
93	Reduced tidal volumes and lung protective ventilatory strategies: where do we go from here?. Current Opinion in Critical Care, 2002, 8, 45-50.	1.6	22
94	Pathophysiology of COVID-19-associated acute respiratory distress syndrome. Lancet Respiratory Medicine,the, 2021, 9, e1.	5.2	22
95	Interpretation of the transpulmonary pressure in the critically ill patient. Annals of Translational Medicine, 2018, 6, 383-383.	0.7	22
96	Transpulmonary pressure monitoring during mechanical ventilation: a bench-to-bedside review. Anaesthesiology Intensive Therapy, 2015, 47, 27-37.	0.4	22
97	Effects of different continuous positive airway pressure devices and periodic hyperinflations on respiratory function. Critical Care Medicine, 2001, 29, 1683-1689.	0.4	21
98	Latent class analysis to predict intensive care outcomes in Acute Respiratory Distress Syndrome: a proposal of two pulmonary phenotypes. Critical Care, 2021, 25, 154.	2.5	21
99	An appraisal of respiratory system compliance in mechanically ventilated covid-19 patients. Critical Care, 2021, 25, 199.	2.5	21
100	Ultrasonographic assessment of parasternal intercostal muscles during mechanical ventilation. Annals of Intensive Care, 2020, 10, 120.	2.2	21
101	COVID-19 and ARDS: the baby lung size matters. Intensive Care Medicine, 2021, 47, 133-134.	3.9	20
102	The Many Faces of Covid-19 at a Glance: A University Hospital Multidisciplinary Account From Milan, Italy. Frontiers in Public Health, 2020, 8, 575029.	1.3	19
103	Fluid resuscitation in trauma patients. Current Opinion in Critical Care, 2014, 20, 444-450.	1.6	17
104	Heat and moisture exchangers (HMEs) and heated humidifiers (HHs) in adult critically ill patients: a systematic review, meta-analysis and meta-regression of randomized controlled trials. Critical Care, 2017, 21, 123.	2.5	17
105	Paracetamol in fever in critically ill patients—an update. Journal of Critical Care, 2017, 38, 245-252.	1.0	17
106	Brainstem clinical and neurophysiological involvement in COVID-19. Journal of Neurology, 2021, 268, 3598-3600.	1.8	17
107	Level of Diffusion and Training of Lung Ultrasound during the COVID-19 Pandemic – A National Online Italian Survey (ITALUS) from the Lung Ultrasound Working Group of the Italian Society of Anesthesia, Analgesia, Resuscitation, and Intensive Care (SIAARTI). Ultraschall in Der Medizin, 2022, 43, 464-472.	0.8	17
108	Positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome: the heterogeneous effects. Critical Care, 2021, 25, 431.	2.5	17

#	Article	IF	CITATIONS
109	Tidal volume in acute respiratory distress syndrome: how best to select it. Annals of Translational Medicine, 2017, 5, 287-287.	0.7	16
110	End-tidal to arterial PCO2 ratio: a bedside meter of the overall gas exchanger performance. Intensive Care Medicine Experimental, 2021, 9, 21.	0.9	15
111	Radiological pattern in ARDS patients: partitioned respiratory mechanics, gas exchange and lung recruitability. Annals of Intensive Care, 2021, 11, 78.	2.2	15
112	Differential Redox State and Iron Regulation in Chronic Obstructive Pulmonary Disease, Acute Respiratory Distress Syndrome and Coronavirus Disease 2019. Antioxidants, 2021, 10, 1460.	2.2	15
113	Recruitment maneuvers in acute respiratory distress syndrome and during general anesthesia. Minerva Anestesiologica, 2016, 82, 210-20.	0.6	15
114	A Morphological and Quantitative Analysis of Lung CT Scan in Patients With Acute Respiratory Distress Syndrome and in Cardiogenic Pulmonary Edema. Journal of Intensive Care Medicine, 2020, 35, 284-292.	1.3	14
115	Internal clock and the surgical ICU patient. Current Opinion in Anaesthesiology, 2020, 33, 177-184.	0.9	14
116	Body mass index and acute respiratory distress severity in patients with and without SARS-CoV-2 infection. British Journal of Anaesthesia, 2020, 125, e376-e377.	1.5	14
117	Performance of heated wire humidifiers: An in vitro study. Journal of Critical Care, 2007, 22, 258-264.	1.0	13
118	Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients: A CT Scan Study*. Critical Care Medicine, 2020, 48, 1494-1502.	0.4	13
119	Body Position Alters Mechanical Power and Respiratory Mechanics During Thoracic Surgery. Anesthesia and Analgesia, 2020, 130, 391-401.	1.1	13
120	Understanding the setting of PEEP from esophageal pressure in patients with ARDS. Intensive Care Medicine, 2015, 41, 1465-1467.	3.9	12
121	Predictors of Helmet CPAP Failure in COVID-19 Pneumonia: A Prospective, Multicenter, and Observational Cohort Study. Canadian Respiratory Journal, 2022, 2022, 1-6.	0.8	11
122	Is the Helmet Different Than the Face Mask in Delivering Noninvasive Ventilation?. Chest, 2006, 129, 1402-1403.	0.4	10
123	Dynamic hyperinflation and intrinsic positive end-expiratory pressure in ARDS patients. Critical Care, 2019, 23, 375.	2.5	10
124	Reply by Gattinoni et al. to Hedenstierna et al., to Maley et al., to Fowler et al., to Bhatia and Mohammed, to Bos, to Koumbourlis and Motoyama, and to Haouzi et al American Journal of Respiratory and Critical Care Medicine, 2020, 202, 628-630.	2.5	10
125	Higher vs. lower PEEP in ARDS: just one part of the whole. Journal of Thoracic Disease, 2018, 10, 56-59.	0.6	9
126	Determinants of the esophageal-pleural pressure relationship in humans. Journal of Applied Physiology, 2020, 128, 78-86.	1.2	9

DAVIDE ALBERTO CHIUMELLO

#	Article	IF	CITATIONS
127	Feasibility and Clinical Outcomes of a Step Up Noninvasive Respiratory Support Strategy in Patients with Severe COVID-19 Pneumonia. Journal of Clinical Medicine, 2021, 10, 5444.	1.0	9
128	Early short course of neuromuscular blocking agents in patients with COVID-19 ARDS: a propensity score analysis. Critical Care, 2022, 26, 141.	2.5	9
129	The monitoring of acute cor pulmonale is still necessary in "Berlin" ARDS patients. Intensive Care Medicine, 2013, 39, 1864-1866.	3.9	8
130	Hazardous mismatch between pulmonary pathogens and antibiotic treatments in COVID-19 patients. British Journal of Anaesthesia, 2020, 125, e380-e382.	1.5	8
131	Anemia in the Intensive Care Unit: How Big Is the Problem?. Transfusion Alternatives in Transfusion Medicine, 2002, 4, 118-120.	0.2	7
132	Transpulmonary Pressure Meaning: Babel or Conceptual Evolution?. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1404-1405.	2.5	7
133	Gas exchange, specific lung elastance and mechanical power in the early and persistent ARDS. Journal of Critical Care, 2020, 55, 42-47.	1.0	7
134	Prone position in ARDS: a simple maneuver still underused. Intensive Care Medicine, 2018, 44, 241-243.	3.9	6
135	Is blood glucose or obesity responsible for the bad prognosis of COVID-19 in obesity – diabetes?. Diabetes Research and Clinical Practice, 2020, 167, 108342.	1.1	6
136	Forecasting the burden of COVID-19 hospitalized patients during the SARS-CoV-2 second wave in Lombardy, Italy. Panminerva Medica, 2021, 63, 86-87.	0.2	6
137	Complexity and unanswered questions in the pathophysiology of COVID-19 ARDS. Intensive Care Medicine, 2021, 47, 495-496.	3.9	6
138	Evidence of SARS-CoV-2 in nasal brushings and olfactory mucosa biopsies of COVID-19 patients. PLoS ONE, 2022, 17, e0266740.	1.1	6
139	Spontaneous breathing during mechanical ventilation*. Critical Care Medicine, 2005, 33, 1170-1171.	0.4	5
140	Lung recruitability in ARDS H1N1 patients. Intensive Care Medicine, 2010, 36, 1791-1792.	3.9	5
141	Is there still a place for noninvasive ventilation in acute hypoxemic respiratory failure?. Intensive Care Medicine, 2018, 44, 2248-2250.	3.9	5
142	Putative Role of the Lung–Brain Axis in the Pathogenesis of COVID-19-Associated Respiratory Failure: A Systematic Review. Biomedicines, 2022, 10, 729.	1.4	5
143	Acid-Base Disorders in COVID-19 Patients with Acute Respiratory Distress Syndrome. Journal of Clinical Medicine, 2022, 11, 2093.	1.0	5
144	Estimation of dead space fraction can be simplified in the acute respiratory distress syndrome. Critical Care, 2010, 14, 195.	2.5	4

#	Article	IF	CITATIONS
145	Transpulmonary pressure. Critical Care Medicine, 2012, 40, 2249-2250.	0.4	4
146	Inflammation and primary graft dysfunction after lung transplantation: CT-PET findings. Minerva Anestesiologica, 2018, 84, 1169-1177.	0.6	4
147	CT Ventilation Imaging. Lung Biology in Health and Disease, 2005, , 33-61.	0.1	4
148	The assessment of esophageal pressure using different devices: a validation study. Minerva Anestesiologica, 2020, 86, 1047-1056.	0.6	4
149	Real World Estimate of Vaccination Protection in Individuals Hospitalized for COVID-19. Vaccines, 2022, 10, 550.	2.1	4
150	Diaphragmatic ultrasound and esophageal pressure in COVID-19 pneumonia during helmet CPAP. Intensive Care Medicine, 2022, 48, 1095-1096.	3.9	4
151	Lung Ultrasound in the Critically Ill Patient. , 2016, , 55-67.		3
152	Thoracic trauma and acute respiratory distress syndrome: mind the link!. Minerva Anestesiologica, 2017, 83, 1004-1006.	0.6	3
153	Oesophageal manometry and gas exchange in patients with COVID-19 acute respiratory distress syndrome. British Journal of Anaesthesia, 2020, 125, e437-e438.	1.5	3
154	Long term feasibility of ultraprotective lung ventilation with low-flow extracorporeal carbon dioxide removal in ARDS patients. Journal of Critical Care, 2022, 71, 154092.	1.0	3
155	Pleural and transpulmonary pressures to tailor protective ventilation in children. Thorax, 2023, 78, 97-105.	2.7	3
156	Correction: Nitrogen washout/washin, helium dilution and computed tomography in the assessment of end expiratory lung volume. Critical Care, 2009, 13, 405.	2.5	2
157	Does Prophylactic CPAP Have Any Role in Thoracic Surgery?. Respiratory Care, 2012, 57, 474-475.	0.8	2
158	Toward lung protective ventilation during general anesthesia: A new challenge. Revista Española De AnestesiologÃa Y Reanimación, 2013, 60, 549-551.	0.1	2
159	Cycling-off criteria during pressure support ventilation: What do we have to monitor?. Journal of Critical Care, 2014, 29, 457-458.	1.0	2
160	Cognitive resistance towards videolaryngoscopy… and why Macintosh refuses to die. Minerva Anestesiologica, 2017, 83, 1221-1223.	0.6	2
161	Different Inspiratory Flow Waveform during Volume-Controlled Ventilation in ARDS Patients. Journal of Clinical Medicine, 2021, 10, 4756.	1.0	2
162	A complication of amiodarone infusion. European Journal of Emergency Medicine, 2004, 11, 102-104.	0.5	1

#	Article	IF	CITATIONS
163	Use of Special Beds. , 2008, , 410-417.		1
164	Respirator management of sepsis-related respiratory failure. Current Infectious Disease Reports, 2009, 11, 365-371.	1.3	1
165	Spatial Orientation and Mechanical Properties of the Human Trachea: A Computed Tomography Study. Respiratory Care, 2015, 60, 561-566.	0.8	1
166	Nonintubated Patients With Acute Respiratory Distress Syndrome. Critical Care Medicine, 2016, 44, 246-247.	0.4	1
167	Reply: Different Definitions of Lung Recruitment by Computed Tomography Scan. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1315-1316.	2.5	1
168	Neurological prognostication during extracorporeal life support: Is NSE just another brick in the wall?. Resuscitation, 2017, 121, A6-A7.	1.3	1
169	ARDS onset time and prognosis: is it a turtle and rabbit race?. Journal of Thoracic Disease, 2017, 9, 973-975.	0.6	1
170	The Acute Respiratory Distress Syndrome ventilatory management is still a complicated picture. Journal of Thoracic Disease, 2018, 10, S4101-S4103.	0.6	1
171	From phenotypes to black holes $\hat{a} \in $ and back. Intensive Care Medicine, 2020, 46, 1498-1499.	3.9	1
172	Aspirin in Coronavirus Disease 2019–Related Acute Respiratory Distress Syndrome: An Old, Low-Cost Therapy With a Strong Rationale. Anesthesia and Analgesia, 2021, 132, 927-929.	1.1	1
173	A Physiologically Based Approach to Perioperative Management of Obese Patients. , 2006, , 263-273.		1
174	Automatic Adjustment of the Inspiratory Trigger and Cycling-Off Criteria Improved Patient-Ventilator Asynchrony During Pressure Support Ventilation. Frontiers in Medicine, 2021, 8, 752508.	1.2	1
175	Noninvasive Ventilation Outside of Intensive Care Units. , 2010, , 223-229.		0
176	Early noninvasive mechanical ventilation in acute lung injury. Critical Care Medicine, 2012, 40, 2735.	0.4	0
177	Mechanical Ventilation in Patients with Acute Severe Asthma. , 2012, , 159-172.		0
178	The high-risk patient. Current Opinion in Critical Care, 2014, 20, 408-410.	1.6	0
179	Transpulmonary pressure during high-frequency oscillation ventilation: Is it the culprit?. Annals of Intensive Care, 2016, 6, 86.	2.2	0
180	Reply: Lung Recruitment Assessment. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1276-1277.	2.5	0

#	Article	IF	CITATIONS
181	Lung Imaging in ARDS. , 2017, , 155-171.		0
182	A Simple Effective Pharmacological Treatment of Hypoxemia During One-Lung Ventilation. Journal of Clinical Medicine, 2019, 8, 1139.	1.0	0
183	Electrical impedance tomography for chest imaging in acute respiratory failure. European Respiratory Journal, 2019, 54, 1901657.	3.1	0
184	Extracorporeal cardiopulmonary resuscitation in out of hospital cardiac arrest: Does exist the right patient?. Resuscitation, 2020, 148, 271-272.	1.3	0
185	Reverse trigger in COVID-19 ARDS. Minerva Anestesiologica, 2021, 87, 1271-1272.	0.6	0
186	Electrolytes, albumin and acid base equilibrium during laparoscopic surgery. Minerva Anestesiologica, 2021, 87, 1300-1308.	0.6	0
187	VAP (Ventilator-Associated Pneumonia). , 2012, , 145-158.		0
188	Postoperative Respiratory Failure after Major Abdominal Surgery: Definition, Diagnosis and Prevention. , 2014, , 43-60.		0
189	Lights and Shadows on Aerosol Therapy in Mechanically Ventilated Patients. , 2014, , 61-79.		0
190	Does the COVID-19 related respiratory failure have a neurogenic component?. , 0, , 33-44.		0
191	Effects on Lung Gas Volume, Respiratory Mechanics and Gas Exchange of a Closed-Circuit Suctioning System during Volume- and Pressure-Controlled Ventilation in ARDS Patients. Journal of Clinical Medicine, 2021, 10, 5657	1.0	0