David Mitton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2040688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of loading conditions in finite element analysis assessed by HR–pQCT on ex vivo fracture prediction. Bone, 2022, 154, 116206.	1.4	2
2	A credible homogenized finite element model to predict radius fracture in the case of a forward fall Journal of the Mechanical Behavior of Biomedical Materials, 2022, 131, 105206.	1.5	0
3	Fracture Risk Evaluation of Bone Metastases: A Burning Issue. Cancers, 2021, 13, 5711.	1.7	10
4	What is the influence of two strain rates on the relationship between human cortical bone toughness and micro-structure?. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 247-254.	1.0	2
5	Failure Prediction of Tumoral Bone with Osteolytic Lesion in Mice. Advanced Structured Materials, 2020, , 17-34.	0.3	1
6	Biomechanics and Spinal Modelling. , 2020, , 491-503.		0
7	3D analysis of the osteonal and interstitial tissue in human radii cortical bone. Bone, 2019, 127, 526-536.	1.4	12
8	Influence of loading condition and anatomical location on human cortical bone linear micro-cracks. Journal of Biomechanics, 2019, 85, 59-66.	0.9	7
9	Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Acta Biomaterialia, 2019, 90, 254-266.	4.1	31
10	Relationships between human cortical bone toughness and collagen cross-links on paired anatomical locations. Bone, 2018, 112, 202-211.	1.4	20
11	Biomechanical characterization of ex vivo human brain using ultrasound shear wave spectroscopy. Ultrasonics, 2018, 84, 119-125.	2.1	10
12	Ex Vivo Radius Fracture Discrimination from Cortical Thickness and Porosity Obtained by Axial Transmission. , 2018, , .		2
13	Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone, 2018, 116, 111-119.	1.4	48
14	3D micro structural analysis of human cortical bone in paired femoral diaphysis, femoral neck and radial diaphysis. Journal of Structural Biology, 2018, 204, 182-190.	1.3	20
15	Strain rate influence on human cortical bone toughness: A comparative study of four paired anatomical sites. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 223-230.	1.5	26
16	An ex vivo experiment to reproduce a forward fall leading to fractured and non-fractured radii. Journal of Biomechanics, 2017, 63, 174-178.	0.9	7
17	Influence of the degree of mineralization of the cortical bone on toughness. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S87-S88.	0.9	0
18	Effect of intra-tibial injection on mechanical properties of mouse bone. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, S57-S58.	0.9	2

#	Article	IF	CITATIONS
19	In Vivo Assessment of Elasticity of Child Rib Cortical Bone Using Quantitative Computed Tomography. Applied Bionics and Biomechanics, 2017, 2017, 1-9.	0.5	4
20	Short isthmic versus long trans-isthmic C2 screw: anatomical and biomechanical evaluation. European Journal of Orthopaedic Surgery and Traumatology, 2016, 26, 785-791.	0.6	7
21	Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models—The European Fracture Study (EFFECT). Radiology, 2016, 280, 837-847.	3.6	38
22	InÂvitro implant–bone interface pressure measurements for a cementless femoral implant. A preliminary study. Journal of Orthopaedic Science, 2016, 21, 487-492.	0.5	3
23	Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 451-459.	1.5	42
24	Quantification of nonlinear elasticity for the evaluation of submillimeter crack length in cortical bone. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 48, 210-219.	1.5	8
25	Effect of strain rate on the toughness of human tibial cortical bone. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 1942-1943.	0.9	3
26	Costal cartilage elasticity can be estimated non-destructively using speed of sound. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 2032-2033.	0.9	0
27	Homogeneous and heterogeneous finite element models to predict radius bone strength in forward fall configuration. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18, 2084-2085.	0.9	1
28	Non Destructive Characterization of Cortical Bone Micro-Damage by Nonlinear Resonant Ultrasound Spectroscopy. PLoS ONE, 2014, 9, e83599.	1.1	31
29	Mechanical response of human abdominal walls ex vivo: Effect of an incisional hernia and a mesh repair. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 38, 126-133.	1.5	40
30	Non-destructive assessment of human ribs mechanical properties using quantitative ultrasound. Journal of Biomechanics, 2014, 47, 1548-1553.	0.9	6
31	Experimental characterization of post rigor mortis human muscle subjected to small tensile strains and application of a simple hyper-viscoelastic model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 1059-1068.	1.0	5
32	A methodology to assess non-axial loading on the distal radius. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 44-45.	0.9	0
33	Contribution of the skin, rectus abdominis and their sheaths to the structural response of the abdominal wall ex vivo. Journal of Biomechanics, 2014, 47, 3056-3063.	0.9	23
34	Mechanical behaviour of the in vivo paediatric and adult trunk during respiratory physiotherapy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 27-36.	1.0	1
35	Biomechanical evaluation of a bioactive artificial anterior cruciate ligament. Advances in Biomechanics and Applications, 2014, 1, 239-252.	0.2	1
36	Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood. Medical and Biological Engineering and Computing, 2013, 51, 971-979.	1.6	34

#	Article	IF	CITATIONS
37	Effect of two loading rates on the elasticity of the human anterior rectus sheath. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 1-5.	1.5	31
38	Biological and Biomechanical Evaluation of the Ligament Advanced Reinforcement System (LARS AC) in a Sheep Model of Anterior Cruciate Ligament Replacement: A 3-Month and 12-Month Study. Arthroscopy - Journal of Arthroscopic and Related Surgery, 2013, 29, 1079-1088.	1.3	54
39	Relationship between human rib mechanical properties and cortical bone density measured by high-resolution quantitative computed tomography. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 191-192.	0.9	5
40	Viscoelastic properties of the human sternocleidomastoideus muscle of aged women in relaxation. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 27, 77-83.	1.5	21
41	Mechanical response of animal abdominal walls in vitro: Evaluation of the influence of a hernia defect and a repair with a mesh implanted intraperitoneally. Journal of Biomechanics, 2013, 46, 561-566.	0.9	30
42	Patient-Specific Computational Abdominal Wall Modeling: Application to Mid-Line Laparotomy Closure. , 2013, , .		0
43	Geometric variability of ribs, costal cartilages and sternums from childhood to teenage. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 277-278.	0.9	0
44	The non-linear response of a muscle in transverse compression: assessment of geometry influence using a finite element model. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 13-21.	0.9	9
45	Prediction of the Vertebral Strength Using a Finite Element Model Derived From Low-Dose Biplanar Imaging. Spine, 2012, 37, E156-E162.	1.0	15
46	First Application of Axial Speed of Sound to Follow Up Injured Equine Tendons. Ultrasound in Medicine and Biology, 2012, 38, 162-167.	0.7	12
47	Apparent Young's modulus of vertebral cortico-cancellous bone specimens. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 23-28.	0.9	26
48	Axial speed of sound for the monitoring of injured equine tendons: A preliminary study. Journal of Biomechanics, 2012, 45, 53-58.	0.9	8
49	Axial speed of sound is related to tendon's nonlinear elasticity. Journal of Biomechanics, 2012, 45, 263-268.	0.9	25
50	Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 15, 131-140.	1.5	43
51	Détection du micro-endommagement dans le tissu osseux trabéculaire par une méthode d'acousto-élasticité dynamique. Irbm, 2011, 32, 269-273.	3.7	0
52	In vivo kinematics of the first carpometacarpal joint after trapezectomy. Chirurgie De La Main, 2011, 30, 97-101.	0.7	5
53	Sensitivity of patient-specific vertebral finite element model from low dose imaging to material properties and loading conditions. Medical and Biological Engineering and Computing, 2011, 49, 1355-1361.	1.6	14
54	Relationships between viscoelastic properties of lumbar intervertebral disc and degeneration grade assessed by MRI. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 593-599.	1.5	35

#	Article	IF	CITATIONS
55	LigartÂ: ligament synthétique «Âbioactif» et «Âbiointégrable»Âpermettant la réhabilitation rapide patientÂ: greffage chimique, évaluations biologiques in vivo, expérimentation animale, étude préclinique. Irbm, 2011, 32, 118-122.	du 3.7	14
56	True stress and Poisson's ratio of tendons during loading. Journal of Biomechanics, 2011, 44, 719-724.	0.9	52
57	Young's modulus repeatability assessment using cycling compression loading on cancellous bone. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2011, 225, 1113-1117.	1.0	3
58	Nonlinear ultrasound monitoring of fatigue microdamage accumulation in cortical bone. , 2011, , .		1
59	Non-invasive assessment of human ribs mechanical properties. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 195-196.	0.9	4
60	First application of an axial speed of sound measurement technique in the monitoring of tendon healing. Computer Methods in Biomechanics and Biomedical Engineering, 2011, 14, 257-259.	0.9	0
61	Bone Overview. , 2011, , 1-28.		3
62	Fast 3D reconstruction of the rib cage from biplanar radiographs. Medical and Biological Engineering and Computing, 2010, 48, 821-828.	1.6	36
63	Subject-specific mechanical properties of vertebral cancellous bone assessed using a low-dose X-ray device. Irbm, 2010, 31, 148-153.	3.7	5
64	Monitoring trabecular bone microdamage using a dynamic acousto-elastic testing method. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 1, 1-14.	1.0	14
65	A Linear Laser Scanner to Measure Cross-Sectional Shape and Area of Biological Specimens During Mechanical Testing. Journal of Biomechanical Engineering, 2010, 132, 105001.	0.6	16
66	Prediction of Femoral Fracture Load: Cross-sectional Study of Texture Analysis and Geometric Measurements on Plain Radiographs versus Bone Mineral Density. Radiology, 2010, 255, 536-543.	3.6	38
67	Dynamics of Homemade Aortic Endografts: In Vivo Study in Humans with Computed Tomography Scanner Modeling. Annals of Vascular Surgery, 2010, 24, 127-139.	0.4	6
68	Subject-specific body segment parameters' estimation using biplanar X-rays: a feasibility study. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 649-654.	0.9	14
69	Modelling of human muscle behaviour with a hyper-elastic constitutive law. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 63-64.	0.9	5
70	Mechanical properties of glenoid cancellous bone. Clinical Biomechanics, 2010, 25, 292-298.	0.5	29
71	Measurement of cross-sectional area variations of five equine superficial digital flexor tendons during tension. Computer Methods in Biomechanics and Biomedical Engineering, 2010, 13, 143-144.	0.9	2
72	Prediction of the vertebral strength using a subject-specific finite-element model. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 225-226.	0.9	1

#	Article	lF	CITATIONS
73	ESTIMATION OF EXTERNAL AND INTERNAL HUMAN BODY DIMENSIONS FROM FEW EXTERNAL MEASUREMENTS. Journal of Musculoskeletal Research, 2009, 12, 191-204.	0.1	1
74	ANTERIOR BENDING ON WHOLE VERTEBRAE USING CONTROLLED BOUNDARY CONDITIONS FOR MODEL VALIDATION. Journal of Musculoskeletal Research, 2009, 12, 71-76.	0.1	4
75	Comparative ultrasound evaluation of human trabecular bone graft properties after treatment with different sterilization procedures. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 90B, 430-437.	1.6	17
76	Assessment of cortical bone elasticity and strength: Mechanical testing and ultrasound provide complementary data. Medical Engineering and Physics, 2009, 31, 1140-1147.	0.8	50
77	3D analysis from micro-MRI during in situ compression on cancellous bone. Journal of Biomechanics, 2009, 42, 2381-2386.	0.9	39
78	Quasi-static compression on dog muscles at high strain. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 131-132.	0.9	0
79	Normal range-of-motion of trapeziometacarpal joint. Chirurgie De La Main, 2009, 28, 297-300.	0.7	27
80	Biomechanical experiments on artificial ligaments for the ACL reconstruction. Computer Methods in Biomechanics and Biomedical Engineering, 2009, 12, 31-32.	0.9	2
81	3D reconstruction of the ribs from lateral and frontal X-rays in comparison to 3D CT-scan reconstruction. Journal of Biomechanics, 2008, 41, 706-710.	0.9	34
82	Nonlinear ultrasound can detect accumulated damage in human bone. Journal of Biomechanics, 2008, 41, 1062-1068.	0.9	38
83	In vivo 3D reconstruction of human vertebrae with the three-dimensional X-ray absorptiometry (3D-XA) method. Osteoporosis International, 2008, 19, 185-192.	1.3	14
84	Role of deltoid and passives elements in stabilization during abduction motion (0°–40°): an ex vivo study. Surgical and Radiologic Anatomy, 2008, 30, 563-568.	0.6	21
85	Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity. Medical and Biological Engineering and Computing, 2008, 46, 799-805.	1.6	34
86	Prediction of mechanical properties of cortical bone by quantitative computed tomography. Medical Engineering and Physics, 2008, 30, 321-328.	0.8	96
87	Prediction of bone mechanical properties using QUS and pQCT: Study of the human distal radius. Medical Engineering and Physics, 2008, 30, 761-767.	0.8	41
88	Three-dimensional reconstruction of the rib cage from biplanar radiography. Irbm, 2008, 29, 278-286.	3.7	13
89	Minimally invasive screw plates for surgery of unstable intertrochanteric femoral fractures: A biomechanical comparative study. Clinical Biomechanics, 2008, 23, 1012-1017.	0.5	18
90	Subject-specific mass and 3D localisation of the mass centre of child body segments using biplanar X-rays. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 203-204.	0.9	1

#	Article	IF	CITATIONS
91	3D Evaluation of the acetabular coverage assessed by biplanar X-rays or single anteroposterior X-ray compared with CT-scan. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 257-262.	0.9	26
92	An anatomical subject-specific FE-model for hip fracture load prediction. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 105-111.	0.9	53
93	Bone mineral density assessment using the EOS® low-dose X-ray device: A feasibility study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2008, 222, 1263-1271.	1.0	14
94	Bone mineral density (BMD) assessment using the EOS®low-dose X-ray device: A feasibility study. Computer Methods in Biomechanics and Biomedical Engineering, 2007, 10, 49-50.	0.9	0
95	Application of nonlinear dynamics to monitoring progressive fatigue damage in human cortical bone. Applied Physics Letters, 2007, 91, .	1.5	28
96	3D RECONSTRUCTION OF THE SPINE FROM BIPLANAR X-RAYS USING LONGITUDINAL AND TRANSVERSAL INFERENCES. Journal of Biomechanics, 2007, 40, S160.	0.9	1
97	Apparent Young's modulus of human radius using inverse finite-element method. Journal of Biomechanics, 2007, 40, 2022-2028.	0.9	59
98	Euler strut.cavity , a New Histomorphometric Parameter of Connectivity Reflects Bone Strength and Speed of Sound in Trabecular Bone from Human Os Calcis. Calcified Tissue International, 2007, 81, 92-98.	1.5	18
99	3D kinematics of the glenohumeral joint during abduction motion: an ex vivo study. Surgical and Radiologic Anatomy, 2007, 29, 291-295.	0.6	12
100	Lumbar intervertebral disc mobility: effect of disc degradation and of geometry. European Journal of Orthopaedic Surgery and Traumatology, 2007, 17, 533-541.	0.6	11
101	Assessment of Femoral Neck Strength by 3-Dimensional X-ray Absorptiometry. Journal of Clinical Densitometry, 2006, 9, 425-430.	0.5	20
102	Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporosis International, 2006, 17, 855-864.	1.3	167
103	Biomechanics of the deltoideus. Surgical and Radiologic Anatomy, 2006, 28, 76-81.	0.6	21
104	External and internal geometry of European adults. Ergonomics, 2006, 49, 1547-1564.	1.1	11
105	P3F-4 Ultrasonic Consequence of Different Common Sterilization Treatments Applied to Human Bone Before Transplantation. , 2006, , .		0
106	3D reconstruction of the pelvis from bi-planar radiography. Computer Methods in Biomechanics and Biomedical Engineering, 2006, 9, 1-5.	0.9	61
107	Personalized Body Segment Parameters From Biplanar Low-Dose Radiography. IEEE Transactions on Biomedical Engineering, 2005, 52, 1756-1763.	2.5	49
108	Three-dimensional rotations of human three-joint fingers: an optoelectronic measurement. Preliminary results. Surgical and Radiologic Anatomy, 2005, 27, 43-50.	0.6	40

#	Article	IF	CITATIONS
109	Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device. Osteoporosis International, 2005, 16, 969-976.	1.3	35
110	Static Mechanical Properties of Custom-Made Aortic Endografts. Annals of Vascular Surgery, 2005, 19, 293-301.	0.4	5
111	Effect of a supercritical CO2 based treatment on mechanical properties of human cancellous bone. European Journal of Orthopaedic Surgery and Traumatology, 2005, 15, 264-269.	0.6	25
112	Reproducibility evaluation of rib cage 3D reconstruction from stereoradiography. Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8, 37-38.	0.9	3
113	Finite element simulation of spinal deformities correction byin situcontouring technique. Computer Methods in Biomechanics and Biomedical Engineering, 2005, 8, 331-337.	0.9	20
114	3D reconstruction of the proximal femur with low-dose digital stereoradiography. Computer Aided Surgery, 2004, 9, 51-57.	1.8	43
115	Rotations of three-joint fingers: a radiological study. Surgical and Radiologic Anatomy, 2004, 26, 392-8.	0.6	12
116	Validation of the relative 3D orientation of vertebrae reconstructed by bi-planar radiography. Medical Engineering and Physics, 2004, 26, 415-422.	0.8	29
117	Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clinical Biomechanics, 2004, 19, 240-247.	0.5	173
118	Determination of personalized inertial parameters of lower limb by biplanar low-dose radiography. International Congress Series, 2004, 1268, 19-24.	0.2	0
119	Surgical Correction of Scoliosis by In Situ Contouring. Spine, 2004, 29, 193-199.	1.0	120
120	Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. European Spine Journal, 2003, 12, 562-566.	1.0	55
121	Three-dimensional (3D) detailed reconstruction of human vertebrae from low-dose digital stereoradiography. European Journal of Orthopaedic Surgery and Traumatology, 2003, 13, 57-62.	0.6	29
122	Explicit calibration method and specific device designed for stereoradiography. Journal of Biomechanics, 2003, 36, 827-834.	0.9	31
123	Dynamic stiffness and damping of porcine muscle specimens. Medical Engineering and Physics, 2003, 25, 795-799.	0.8	21
124	A Biplanar Reconstruction Method Based on 2D and 3D Contours: Application to the Distal Femur. Computer Methods in Biomechanics and Biomedical Engineering, 2003, 6, 1-6.	0.9	119
125	Personalised 3D reconstruction of proximal femur from low-dose digital biplanar radiographs. International Congress Series, 2003, 1256, 214-219.	0.2	7
126	Fast semiautomatic stereoradiographic reconstruction of scoliotic spines using multi-scale image processing and statistical geometric models. International Congress Series, 2003, 1256, 207-213.	0.2	3

#	Article	IF	CITATIONS
127	Three-dimensional reconstruction of the human spine from bi-planar radiographs: using multiscale wavelet analysis and spline interpolators for semi-automation. , 2003, , .		4
128	Title is missing!. Spine, 2003, 28, 1158-1162.	1.0	7
129	Three-Dimensional Quantitative Segmental Analysis of Scoliosis Corrected by the In Situ Contouring Technique. Spine, 2003, 28, 1158-1162.	1.0	23
130	Three-dimensional surface rendering reconstruction of scoliotic vertebrae using a non stereo-corresponding points technique. European Spine Journal, 2002, 11, 344-352.	1.0	37
131	3D assessment and simulation of surgical correction of spine deformities by in situ contouring technique. , 2002, , 291-296.		0
132	Accuracy of the 3D angular position of vertebrae reconstructed by low dose digital stereoradiography. , 2002, , 1061-1061.		0
133	3D detailed reconstruction of vertebrae with low dose digital stereoradiography. Studies in Health Technology and Informatics, 2002, 91, 286-90.	0.2	18
134	An investigation of segmentation methods and texture analysis applied to tomographic images of human vertebral cancellous bone. Journal of Microscopy, 2000, 197, 305-316.	0.8	14
135	Quantitative morphometric study of thoracic spine A preliminary parameters statistical analysis. European Journal of Orthopaedic Surgery and Traumatology, 2000, 10, 85-91.	0.6	26
136	3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Medical and Biological Engineering and Computing, 2000, 38, 133-139.	1.6	142
137	High-Resolution Computed Tomography for Architectural Characterization of Human Lumbar Cancellous Bone: Relationships with Histomorphometry and Biomechanics. Osteoporosis International, 1999, 10, 353-360.	1.3	64
138	Mechanical Properties of Ewe Vertebral Cancellous Bone Compared With Histomorphometry and High-Resolution Computed Tomography Parameters. Bone, 1998, 22, 651-658.	1.4	39
139	The effects of density and test conditions on measured compression and shear strength of cancellous bone from the lumbar vertebrae of ewes. Medical Engineering and Physics, 1997, 19, 464-474.	0.8	48
140	Comparison between bone density and bone strength in glucocorticoid-treated aged ewes. Bone, 1995, 17, S409-S414.	1.4	15
141	HUMOS (Human Model for Safety) Geometry: From One Specimen to the 5 th and 95 th Percentile. , 0, , .		14