
Cécile Thibon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2040410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The grape must non-Saccharomyces microbial community: Impact on volatile thiol release. International Journal of Food Microbiology, 2011, 151, 210-215.	4.7	130
2	Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming—Review. Critical Reviews in Food Science and Nutrition, 2019, 59, 14-30.	10.3	91
3	Nitrogen catabolic repression controls the release of volatile thiols by <i>Saccharomyces cerevisiae</i> during wine fermentation. FEMS Yeast Research, 2008, 8, 1076-1086.	2.3	89

 $_4$ Identification and Characteristics of New Volatile Thiols Derived from the Hop (<i>Humulus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622 T $_{5.2}^{4}$

5	Enhanced 3-Sulfanylhexan-1-ol Production in Sequential Mixed Fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae Reveals a Situation of Synergistic Interaction between Two Industrial Strains. Frontiers in Microbiology, 2016, 7, 293.	3.5	75
6	What is the expected impact of climate change on wine aroma compounds and their precursors in grape?. Oeno One, 2017, 51, 141-146.	1.4	69
7	Impact of noble rot on the aroma precursor of 3-sulfanylhexanol content in Vitis vinifera L. cv Sauvignon blanc and Semillon grape juice. Food Chemistry, 2009, 114, 1359-1364.	8.2	64
8	The influence of packaging on wine conservation. Food Control, 2012, 23, 302-311.	5.5	60
9	3-Sulfanylhexanol Precursor Biogenesis in Grapevine Cells: The Stimulating Effect of <i>Botrytis cinerea</i> . Journal of Agricultural and Food Chemistry, 2011, 59, 1344-1351.	5.2	50
10	Enhancement of volatile thiol release of Saccharomyces cerevisiae strains using molecular breeding. Applied Microbiology and Biotechnology, 2013, 97, 5893-5905.	3.6	42
11	Analysis of the diastereoisomers of the cysteinylated aroma precursor of 3-sulfanylhexanol in Vitis vinifera grape must by gas chromatography coupled with ion trap tandem mass spectrometry. Journal of Chromatography A, 2008, 1183, 150-157.	3.7	41
12	1,8-Cineole in French Red Wines: Evidence for a Contribution Related to Its Various Origins. Journal of Agricultural and Food Chemistry, 2017, 65, 383-393.	5.2	35
13	Elucidation of the 1,3-Sulfanylalcohol Oxidation Mechanism: An Unusual Identification of the Disulfide of 3-Sulfanylhexanol in Sauternes Botrytized Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 10606-10613.	5.2	34
14	Identification of S-3-(hexanal)-glutathione and its bisulfite adduct in grape juice from Vitis vinifera L. cv. Sauvignon blanc as new potential precursors of 3SH. Food Chemistry, 2016, 199, 711-719.	8.2	33
15	Aromatic potential of botrytized white wine grapes: Identification and quantification of new cysteine-S-conjugate flavor precursors. Analytica Chimica Acta, 2010, 660, 190-196.	5.4	32
16	Involvement of Dimethyl Sulfide and Several Polyfunctional Thiols in the Aromatic Expression of the Aging Bouquet of Red Bordeaux Wines. Journal of Agricultural and Food Chemistry, 2015, 63, 8879-8889.	5.2	30
17	Non-Saccharomyces yeasts as bioprotection in the composition of red wine and in the reduction of sulfur dioxide. LWT - Food Science and Technology, 2021, 149, 111781.	5.2	28
18	Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level. BMC Plant Biology, 2016, 16, 173.	3.6	26

CéCILE THIBON

#	Article	IF	CITATIONS
19	The effects of a moderate grape temperature increase on berry secondary metabolites. Oeno One, 2019, 53, .	1.4	20
20	Comparison of electron and chemical ionization modes for the quantification of thiols and oxidative compounds in white wines by gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 2015, 1415, 123-133.	3.7	19
21	Sensory characterisation of Bordeaux red wines produced without added sulfites. Oeno One, 2020, 54, 733-743.	1.4	19
22	Vine Nitrogen Status Does Not Have a Direct Impact on 2-Methoxy-3-isobutylpyrazine in Grape Berries and Wines. Journal of Agricultural and Food Chemistry, 2015, 63, 9789-9802.	5.2	18
23	Surprising Structural Lability of a Cysteineâ€ <i>S</i> â€Conjugate Precursor of 4â€Methylâ€4â€sulfanylpentanâ€2â€one, a Varietal Aroma in Wine of <i>Vitis vinifera</i> L. cv. Sauvignon Blanc. Chemistry and Biodiversity, 2008, 5, 793-810.	2.1	17
24	Yeast and Filamentous Fungi Microbial Communities in Organic Red Grape Juice: Effect of Vintage, Maturity Stage, SO2, and Bioprotection. Frontiers in Microbiology, 2021, 12, 748416.	3.5	12
25	Nebulized water cooling of the canopy affects leaf temperature, berry composition and wine quality of Sauvignon blanc. Journal of the Science of Food and Agriculture, 2017, 97, 1267-1275.	3.5	8
26	Aromatic Potential of Bordeaux Grape Cultivars: Identification and Assays on 4-Oxononanoic Acid, a Î ³ -Nonalactone Precursor. Journal of Agricultural and Food Chemistry, 2020, 68, 13344-13352.	5.2	8
27	What is the expected impact of climate change on wine aroma compounds and their precursors in grape?. Oeno One, 2017, 51, 141.	1.4	8
28	Effect of vine nitrogen status, grapevine variety and rootstock on the levels of berry S-glutathionylated and S-cysteinylated precursors of 3-sulfanylhexan-1-ol. Oeno One, 2015, 49, 253.	1.4	7
29	Impact of Closure OTR on the Volatile Compound Composition and Oxidation Aroma Intensity of Sauvignon Blanc Wines during and after 10 Years of Bottle Storage. Journal of Agricultural and Food Chemistry, 2021, 69, 9883-9894.	5.2	5
30	Influence of curettage on Esca-diseased <i>Vitis vinifera</i> L. cv. Sauvignon blanc plants on the quality of musts and wines. Oeno One, 2021, 55, 171-182.	1.4	3