
E Charles Leek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2040060/publications.pdf Version: 2024-02-01

FCHADIESLEEK

#	Article	IF	CITATIONS
1	The role of parvocellular and magnocellular shape maps in the derivation of spatially integrated 3D object representations. Cognitive Neuropsychology, 2022, 39, 92-94.	1.1	1
2	What do deep neural networks tell us about biological vision?. Vision Research, 2022, 198, 108069.	1.4	4
3	Deep neural networks and image classification in biological vision. Vision Research, 2022, 197, 108058.	1.4	12
4	A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision. Vision Research, 2021, 189, 81-92.	1.4	12
5	Early sensitivity of evoked potentials to surface and volumetric structure during the visual perception of threeâ€dimensional object shape. European Journal of Neuroscience, 2020, 52, 4453-4467.	2.6	5
6	A surface-based code contributes to visual shape perception. Journal of Vision, 2019, 19, 6.	0.3	3
7	Surface diagnosticity predicts the high-level representation of regular and irregular object shape in human vision. Attention, Perception, and Psychophysics, 2019, 81, 1589-1608.	1.3	6
8	Human Parahippocampal Cortex Supports Spatial Binding in Visual Working Memory. Cerebral Cortex, 2018, 28, 3589-3599.	2.9	8
9	Effects of stereoscopic disparity on early ERP components during classification of three-dimensional objects. Quarterly Journal of Experimental Psychology, 2018, 71, 1419-1430.	1.1	15
10	Stereo viewing modulates three-dimensional shape processing during object recognition: A high-density ERP study Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 518-534.	0.9	5
11	Study protocol for a randomised pilot study of a computer-based, non-pharmacological cognitive intervention for motor slowing and motor fatigue in Parkinson's disease. Pilot and Feasibility Studies, 2018, 4, 190.	1.2	0
12	Domain General Sequence Operations Contribute to Pre-SMA Involvement in Visuo-spatial Processing. Frontiers in Human Neuroscience, 2016, 10, 9.	2.0	19
13	Early differential sensitivity of evoked-potentials to local and global shape during the perception of three-dimensional objects. Neuropsychologia, 2016, 89, 495-509.	1.6	15
14	Implicit encoding of extrinsic object properties in stored representations mediating recognition: Evidence from shadow-specific repetition priming. Vision Research, 2015, 108, 49-55.	1.4	7
15	Stereo Disparity Facilitates View Generalization during Shape Recognition for Solid Multipart Objects. Quarterly Journal of Experimental Psychology, 2015, 68, 2419-2436.	1.1	8
16	The Role of Surface-Based Representations of Shape in Visual Object Recognition. Quarterly Journal of Experimental Psychology, 2015, 68, 2351-2369.	1.1	13
17	Shape information mediating basic- and subordinate-level object recognition revealed by analyses of eye movements Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 451-456.	0.9	36
18	Impaired Visuospatial Transformation but Intact Sequence Processing in Parkinson Disease. Cognitive and Behavioral Neurology, 2014, 27, 130-138.	0.9	9

E CHARLES LEEK

#	Article	lF	CITATIONS
19	Non-selective lexical access in bilinguals is spontaneous and independent of input monitoring: Evidence from eye tracking. Cognition, 2013, 129, 418-425.	2.2	40
20	Curvature and the visual perception of shape: Theory on information along object boundaries and the minima rule revisited Psychological Review, 2012, 119, 668-677.	3.8	15
21	Eye movement patterns during the recognition of three-dimensional objects: Preferential fixation of concave surface curvature minima. Journal of Vision, 2012, 12, 7-7.	0.3	21
22	Visuospatial transformation impairments in Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 2012, 34, 1053-1064.	1.3	10
23	Impaired integration of object knowledge and visual input in a case of ventral simultanagnosia with bilateral damage to area V4. Cognitive Neuropsychology, 2012, 29, 569-583.	1.1	5
24	Eye movements during object recognition in visual agnosia. Neuropsychologia, 2012, 50, 2142-2153.	1.6	8
25	Successes and failures in producing attentional object-based cueing effects. Attention, Perception, and Psychophysics, 2012, 74, 43-69.	1.3	43
26	The Time Course of Activation of Object Shape and Shape+Colour Representations during Memory Retrieval. PLoS ONE, 2012, 7, e48550.	2.5	18
27	Do reading processes differ in transparent versus opaque orthographies? A study of acquired dyslexia in Welsh/English bilinguals. Cognitive Neuropsychology, 2011, 28, 546-563.	1.1	13
28	Negative priming of unattended part primes: Implications for models of holistic and analytic processing in object recognition. Quarterly Journal of Experimental Psychology, 2009, 62, 2289-2297.	1.1	1
29	Functional specialization in the supplementary motor complex. Nature Reviews Neuroscience, 2009, 10, 78-78.	10.2	28
30	Surface but not volumetric part structure mediates three-dimensional shape representation: Evidence from part–whole priming. Quarterly Journal of Experimental Psychology, 2009, 62, 814-830.	1.1	18
31	Orientation Sensitivity at Different Stages of Object Processing: Evidence from Repetition Priming and Naming. PLoS ONE, 2008, 3, e2256.	2.5	23
32	Do reading processes differ in transparent vs. opaque orthographies? A study of acquired dyslexia in Welsh/English bilinguals. Brain and Language, 2007, 103, 97-98.	1.6	3
33	Computational mechanisms of object constancy for visual recognition revealed by event-related potentials. Vision Research, 2007, 47, 706-713.	1.4	23
34	A polarity effect in misoriented object recognition: The role of polar features in the computation of orientation-invariant shape representations. Visual Cognition, 2006, 13, 573-600.	1.6	24
35	Structure-Based Modulation of Inhibition of Return is Triggered by Object-Internal but not Occluding Shape Features. Quarterly Journal of Experimental Psychology, 2006, 59, 1857-1866.	1.1	7
36	The Structure of Three-Dimensional Object Representations in Human Vision: Evidence From Whole-Part Matching Journal of Experimental Psychology: Human Perception and Performance, 2005, 31, 668-684.	0.9	34

E CHARLES LEEK

#	Article	IF	CITATIONS
37	Functional contribution of medial premotor cortex to visuo-spatial transformation in humans. Neuroscience Letters, 2004, 355, 209-212.	2.1	32
38	Orientation invariance in visual object priming depends on prime—target asynchrony. Perception & Psychophysics, 2003, 65, 469-477.	2.3	19
39	The modulation of inhibition of return by objectinternal structure: Implications for theories of object-based attentional selection. Psychonomic Bulletin and Review, 2003, 10, 493-502.	2.8	32
40	Superior Written Over Spoken Picture Naming in a Case of Frontotemporal Dementia. Neurocase, 2001, 7, 89-96.	0.6	14
41	The Analysis of Orientation-Dependent Time Costs in Visual Recognition. Perception, 1998, 27, 803-816.	1.2	20