Yongmin Ko

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2039883/yongmin-ko-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23 654 11 25 g-index

29 782 15.9 4.17 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
23	Aluminum textile-based binder-free nanostructured battery cathodes using a layer-by-layer assembly of metal/metal oxide nanoparticles. <i>Applied Physics Reviews</i> , 2021 , 8, 011405	17.3	9
22	Layer-by-Layer Assembly-Based Electrocatalytic Fibril Electrodes Enabling Extremely Low Overpotentials and Stable Operation at 1 A Em in Water-Splitting Reaction. <i>Advanced Functional Materials</i> , 2021 , 31, 2102530	15.6	3
21	Charge Transfer: Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage (Adv. Energy Mater. 27/2021). <i>Advanced Energy Materials</i> , 2021 , 11, 2170108	21.8	О
20	Textile-Type Lithium-Ion Battery Cathode Enabling High Specific/Areal Capacities and High Rate Capability through Ligand Replacement Reaction-Mediated Assembly. <i>Advanced Energy Materials</i> , 2021 , 11, 2101631	21.8	7
19	Interfacial Design and Assembly for Flexible Energy Electrodes with Highly Efficient Energy Harvesting, Conversion, and Storage. <i>Advanced Energy Materials</i> , 2021 , 11, 2002969	21.8	7
18	Nanoparticle-Based Electrodes: Nanoparticle-Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layer-by-Layer Assembly (Adv. Mater. 51/2020). <i>Advanced Materials</i> , 2020 , 32, 2070382	24	
17	Conductive Elastomers: A Metal-Like Conductive Elastomer with a Hierarchical Wrinkled Structure (Adv. Mater. 7/2020). <i>Advanced Materials</i> , 2020 , 32, 2070051	24	1
16	A Metal-Like Conductive Elastomer with a Hierarchical Wrinkled Structure. <i>Advanced Materials</i> , 2020 , 32, e1906460	24	34
15	Nanoparticle-Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layer-by-Layer Assembly. <i>Advanced Materials</i> , 2020 , 32, e2001924	24	8
14	Room-Temperature Metallic Fusion-Induced Layer-by-Layer Assembly for Highly Flexible Electrode Applications. <i>Advanced Functional Materials</i> , 2019 , 29, 1806584	15.6	18
13	Highly conductive electrocatalytic gold nanoparticle-assembled carbon fiber electrode for high-performance glucose-based biofuel cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13495-13505	13	23
12	High-performance electrochromic films with fast switching times using transparent/conductive nanoparticle-modulated charge transfer. <i>Nanoscale</i> , 2019 , 11, 17815-17830	7.7	13
11	Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances. <i>Applied Surface Science</i> , 2018 , 440, 730-740	6.7	7
10	Stitchable supercapacitors with high energy density and high rate capability using metal nanoparticle-assembled cotton threads. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 20421-20432	13	17
9	Thin-Film Electrode Design for High Volumetric Electrochemical Performance Using Metal Sputtering-Combined Ligand Exchange Layer-by-Layer Assembly. <i>Advanced Functional Materials</i> , 2018 , 28, 1804926	15.6	15
8	High-power hybrid biofuel cells using layer-by-layer assembled glucose oxidase-coated metallic cotton fibers. <i>Nature Communications</i> , 2018 , 9, 4479	17.4	84
7	Flexible supercapacitor electrodes based on real metal-like cellulose papers. <i>Nature Communications</i> , 2017 , 8, 536	17.4	237

LIST OF PUBLICATIONS

Layer-by-layer assembled (high-energy carbon nanotube/conductive carbon nanotube)n nanocomposites for high volumetric capacitance supercapacitor electrodes. *RSC Advances*, **2016**, 6, 21844721853

5	Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials. <i>Nano Energy</i> , 2015 , 12, 612-625	17.1	43
4	Amphiphilic layer-by-layer assembly overcoming solvent polarity between aqueous and nonpolar media. <i>Journal of the American Chemical Society</i> , 2014 , 136, 17213-23	16.4	28
3	Layer-by-Layer Assembly of Inorganic Nanosheets and Polyelectrolytes for Reverse Osmosis Composite Membranes. <i>Journal of Chemical Engineering of Japan</i> , 2014 , 47, 180-186	0.8	7
2	Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. <i>ACS Nano</i> , 2013 , 7, 143-53	16.7	76
1	Charge-Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticle-Based Electrodes. <i>Advanced Functional Materials</i> ,2106438	15.6	3