John B Bradford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2039534/publications.pdf

Version: 2024-02-01

50276 74163 7,038 148 46 75 citations h-index g-index papers 155 155 155 7269 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Management and environmental factors associated with simulated restoration seeding barriers in sagebrush steppe. Restoration Ecology, 2023, 31, .	2.9	4
2	Tree mortality response to droughtâ€density interactions suggests opportunities to enhance drought resistance. Journal of Applied Ecology, 2022, 59, 549-559.	4.0	22
3	Soil moisture response to seasonal drought conditions and postâ€ŧhinning forest structure. Ecohydrology, 2022, 15, .	2.4	12
4	Primary production responses to extreme changes in North American Monsoon precipitation vary by elevation and plant functional composition through time. Journal of Ecology, 2022, 110, 2232-2245.	4.0	5
5	An Integrative Ecological Drought Framework to Span Plant Stress to Ecosystem Transformation. Ecosystems, 2021, 24, 739-754.	3.4	22
6	Forest density intensifies the importance of snowpack to growth in waterâ€limited pine forests. Ecological Applications, 2021, 31, e02211.	3.8	7
7	Landscapeâ€scale restoration minimizes tree growth vulnerability to 21 st century drought in a dry forest. Ecological Applications, 2021, 31, e2238.	3.8	8
8	UAV-Based Estimate of Snow Cover Dynamics: Optimizing Semi-Arid Forest Structure for Snow Persistence. Remote Sensing, 2021, 13, 1036.	4.0	10
9	Seasonal Precipitation and Soil Moisture Relationships Across Forests and Woodlands in the Southwestern United States. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005986.	3.0	11
10	Species mixture effects and climate influence growth, recruitment and mortality in Interior West USA <i>Populus tremuloides ⟨i⟩ onifer communities. Journal of Ecology, 2021, 109, 2934-2949.</i>	4.0	1
11	Divergent climate change effects on widespread dryland plant communities driven by climatic and ecohydrological gradients. Global Change Biology, 2021, 27, 5169-5185.	9.5	19
12	Biotic vs abiotic controls on temporal sensitivity of primary production to precipitation across North American drylands. New Phytologist, 2021, 231, 2150-2161.	7.3	18
13	Quantifying the demographic vulnerabilities of dry woodlands to climate and competition using rangewide monitoring data. Ecology, 2021, 102, e03425.	3.2	20
14	Understanding the future of big sagebrush regeneration: challenges of projecting complex ecological processes. Ecosphere, 2021, 12, e03695.	2.2	7
15	Making research relevant: Sharing climate change research with rangeland advisors to transform results into drought resilience. Rangelands, 2021, 43, 185-193.	1.9	2
16	The aboveground and belowground growth characteristics of juvenile conifers in the southwestern United States. Ecosphere, 2021, 12, e03839.	2.2	8
17	Gaps and hotspots in the state of knowledge of pinyon-juniper communities. Forest Ecology and Management, 2020, 455, 117628.	3.2	22
18	Assessing the ecological impacts of biomass harvesting along a disturbance severity gradient. Ecological Applications, 2020, 30, e02042.	3.8	5

#	Article	IF	Citations
19	Forest Management Under Megadrought: Urgent Needs at Finer Scale and Higher Intensity. Frontiers in Forests and Global Change, 2020, 3, .	2.3	16
20	Non-analog increases to air, surface, and belowground temperature extreme events due to climate change. Climatic Change, 2020, 163, 2233-2256.	3.6	11
21	Unfamiliar Territory: Emerging Themes for Ecological Drought Research and Management. One Earth, 2020, 3, 337-353.	6.8	35
22	Low stand density moderates growth declines during hot droughts in semiâ€arid forests. Journal of Applied Ecology, 2020, 57, 1089-1102.	4.0	44
23	Soil water availability shapes species richness in midâ€latitude shrub steppe plant communities. Journal of Vegetation Science, 2020, 31, 646-657.	2.2	16
24	<scp>UAV</scp> â€derived estimates of forest structure to inform ponderosa pine forest restoration. Remote Sensing in Ecology and Conservation, 2020, 6, 181-197.	4.3	36
25	Small-scale water deficits after wildfires create long-lasting ecological impacts. Environmental Research Letters, 2020, 15, 044001.	5.2	19
26	Assessment of population genetics and climatic variability can refine climateâ€informed seed transfer guidelines. Restoration Ecology, 2020, 28, 485-493.	2.9	19
27	Bridging the research-management gap: landscape science in practice on public lands in the western United States. Landscape Ecology, 2020, 35, 545-560.	4.2	24
28	Stand density, drought, and herbivory constrain ponderosa pine regeneration pulse. Canadian Journal of Forest Research, 2020, 50, 862-871.	1.7	14
29	Robust ecological drought projections for drylands in the 21st century. Global Change Biology, 2020, 26, 3906-3919.	9.5	118
30	Soil texture and precipitation seasonality influence plant community structure in North American temperate shrub steppe. Ecology, 2019, 100, e02824.	3.2	26
31	Patterns of Big Sagebrush Plant Community Composition and Stand Structure in the Western United States. Rangeland Ecology and Management, 2019, 72, 505-514.	2.3	3
32	Soil and stand structure explain shrub mortality patterns following global change–type drought and extreme precipitation. Ecology, 2019, 100, e02889.	3.2	33
33	Assessing plant production responses to climate across water-limited regions using Google Earth Engine. Remote Sensing of Environment, 2019, 233, 111379.	11.0	21
34	Longâ€term plant community trajectories suggest divergent responses of native and nonâ€native perennials and annuals to vegetation removal and seeding treatments. Restoration Ecology, 2019, 27, 821-831.	2.9	13
35	Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecology Letters, 2019, 22, 1357-1366.	6.4	61
36	Soil characteristics are associated with gradients of big sagebrush canopy structure after disturbance. Ecosphere, 2019, 10, e02780.	2.2	19

#	Article	IF	CITATIONS
37	Influence of climate, postâ€treatment weather extremes, and soil factors on vegetation recovery after restoration treatments in the southwestern US. Applied Vegetation Science, 2019, 22, 85-95.	1.9	10
38	Climate-Driven Shifts in Soil Temperature and Moisture Regimes Suggest Opportunities to Enhance Assessments of Dryland Resilience and Resistance. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	40
39	A Framework for Quantifying Resilience to Forest Disturbance. Frontiers in Forests and Global Change, 2019, 2, .	2.3	20
40	Assessing rangeland health under climate variability and change. , 2019, , 293-309.		1
41	Plant Production Responses to Precipitation Differ Along an Elevation Gradient and Are Enhanced Under Extremes. Ecosystems, 2019, 22, 699-708.	3.4	12
42	Bioclimatic Envelopes for Individual Demographic Events Driven by Extremes: Plant Mortality from Drought and Warming. International Journal of Plant Sciences, 2019, 180, 53-62.	1.3	25
43	Effects of Changing Climate on the Hydrological Cycle in Cold Desert Ecosystems of the Great Basin and Columbia Plateau. Rangeland Ecology and Management, 2019, 72, 1-12.	2.3	59
44	Functional Group, Biomass, and Climate Change Effects on Ecological Drought in Semiarid Grasslands. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1072-1085.	3.0	13
45	Current reclamation practices after oil and gas development do not speed up succession or plant community recovery in big sagebrush ecosystems in Wyoming. Restoration Ecology, 2018, 26, 114-123.	2.9	31
46	Forest Floor and Mineral Soil Respiration Rates in a Northern Minnesota Red Pine Chronosequence. Forests, 2018, 9, 16.	2.1	9
47	Increasing temperature seasonality may overwhelm shifts in soil moisture to favor shrub over grass dominance in Colorado Plateau drylands. Oecologia, 2018, 188, 1195-1207.	2.0	17
48	<scp>STEPWAT</scp> 2: an individualâ€based model for exploring the impact of climate and disturbance on dryland plant communities. Ecosphere, 2018, 9, e02394.	2.2	14
49	Estimating Soil Respiration in a Subalpine Landscape Using Point, Terrain, Climate, and Greenness Data. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3231-3249.	3.0	15
50	Anticipatory natural resource science and management for a changing future. Frontiers in Ecology and the Environment, 2018, 16, 295-303.	4.0	68
51	Life history characteristics may be as important as climate projections for defining range shifts: An example for common tree species in the intermountain western <scp>US</scp> . Diversity and Distributions, 2018, 24, 1844-1859.	4.1	4
52	Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands. Global Change Biology, 2018, 24, 4972-4982.	9.5	78
53	Beyond traditional ecological restoration on the Colorado Plateau. Restoration Ecology, 2018, 26, 1055-1060.	2.9	25
54	Effects of Climate Change on Rangeland Vegetation in the Northern Rockies. Advances in Global Change Research, 2018, , 97-114.	1.6	6

#	Article	IF	CITATIONS
55	Longâ€ŧerm trends in restoration and associated land treatments in the southwestern United States. Restoration Ecology, 2018, 26, 311-322.	2.9	49
56	Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 2017, 8, 14196.	12.8	282
57	Climate change may restrict dryland forest regeneration in the 21st century. Ecology, 2017, 98, 1548-1559.	3.2	77
58	Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics. Ecological Applications, 2017, 27, 1082-1095.	3.8	27
59	Aridity increases below-ground niche breadth in grass communities. Plant Ecology, 2017, 218, 385-394.	1.6	22
60	A window of opportunity for climateâ€change adaptation: easing tree mortality by reducing forest basal area. Frontiers in Ecology and the Environment, 2017, 15, 11-17.	4.0	120
61	Climate changeâ€induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands. Global Change Biology, 2017, 23, 2743-2754.	9.5	121
62	Densityâ€dependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology, 2017, 54, 1605-1614.	4.0	222
63	Future soil moisture and temperature extremes imply expanding suitability for rainfed agriculture in temperate drylands. Scientific Reports, 2017, 7, 12923.	3.3	47
64	Topographic, edaphic, and vegetative controls on plantâ€available water. Ecohydrology, 2017, 10, e1897.	2.4	19
65	Ecohydrological role of biological soil crusts across a gradient in levels of development. Ecohydrology, 2017, 10, e1875.	2.4	31
66	Competition amplifies drought stress in forests across broad climatic and compositional gradients. Ecosphere, 2017, 8, e01849.	2.2	119
67	Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western U.S Plant Ecology, 2017, 218, 957-970.	1.6	17
68	Potential impacts of overlapping landâ€use and climate in a sensitive dryland: a case study of the Colorado Plateau, USA. Ecosphere, 2017, 8, e01823.	2.2	41
69	Influence of Repeated Prescribed Fire on Tree Growth and Mortality in Pinus resinosa Forests, Northern Minnesota. Forest Science, 2017, 63, 94-100.	1.0	14
70	Mid″atitude shrub steppe plant communities: climate change consequences for soil water resources. Ecology, 2016, 97, 2342-2354.	3.2	49
71	Seed bank and big sagebrush plant community composition in a range margin for big sagebrush. Ecosphere, 2016, 7, e01453.	2.2	12
72	Does the stressâ€gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems. Functional Ecology, 2016, 30, 10-19.	3.6	64

#	Article	IF	Citations
73	Long-term thinning alters ponderosa pine reproduction in northern Arizona. Forest Ecology and Management, 2016, 374, 154-165.	3.2	38
74	Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height. Ecosphere, 2016, 7, e01418.	2.2	12
75	Spatial and ecological variation in dryland ecohydrological responses to climate change: implications for management. Ecosphere, 2016, 7, e01590.	2.2	31
76	Sagebrush, Greater Sage-Grouse, and the Occurrence and Importance of Forbs. Western North American Naturalist, 2016, 76, 298.	0.4	21
77	Growth–climate relationships across topographic gradients in the northern Great Lakes. Ecohydrology, 2016, 9, 918-929.	2.4	7
78	Predicting tree biomass growth in the temperate–boreal ecotone: Is tree size, age, competition, or climate response most important?. Global Change Biology, 2016, 22, 2138-2151.	9.5	71
79	A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration. Forest Ecology and Management, 2016, 361, 328-338.	3.2	89
80	Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States. Ecology, 2015, 96, 1835-1845.	3.2	11
81	Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States. Global Change Biology, 2015, 21, 4049-4062.	9.5	83
82	Variation in Fractal Symmetry of Annual Growth in Aspen as an Indicator of Developmental Stability in Trees. Symmetry, 2015, 7, 354-364.	2.2	5
83	Linear Models for Airborne-Laser-Scanning-Based Operational Forest Inventory With Small Field Sample Size and Highly Correlated LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5600-5612.	6.3	23
84	Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts. Ecosphere, 2015 , 6 , $1-31$.	2.2	29
85	Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles. Global Change Biology, 2015, 21, 708-721.	9.5	66
86	LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients. Remote Sensing of Environment, 2015, 169, 113-127.	11.0	40
87	Fifteen-Year Patterns of Soil Carbon and Nitrogen Following Biomass Harvesting. Soil Science Society of America Journal, 2014, 78, 624-633.	2.2	21
88	Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States. Biogeosciences, 2014, 11, 6417-6425.	3.3	23
89	Initial soil respiration response to biomass harvesting and green-tree retention in aspen-dominated forests of the Great Lakes region. Forest Ecology and Management, 2014, 328, 342-352.	3.2	15
90	Quantifying understorey vegetation in the US Lake States: a proposed framework to inform regional forest carbon stocks. Forestry, 2014, 87, 629-638.	2.3	10

#	Article	IF	Citations
91	Influence of stocking, site quality, stand age, low-severity canopy disturbance, and forest composition on sub-boreal aspen mixedwood carbon stocks. Canadian Journal of Forest Research, 2014, 44, 230-242.	1.7	8
92	Forest stand structure, productivity, and age mediate climatic effects on aspen decline. Ecology, 2014, 95, 2040-2046.	3.2	35
93	Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13721-13726.	7.1	249
94	Early indicators of change: divergent climate envelopes between tree life stages imply range shifts in the western <scp>U</scp> nited <scp>S</scp> tates. Global Ecology and Biogeography, 2014, 23, 168-180.	5.8	172
95	Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality. Oecologia, 2014, 175, 363-374.	2.0	60
96	Ecohydrology of Adjacent Sagebrush and Lodgepole Pine Ecosystems: The Consequences of Climate Change and Disturbance. Ecosystems, 2014, 17, 590-605.	3.4	48
97	Successes and Challenges from Formation to Implementation of Eleven Broadâ€Extent Conservation Programs. Conservation Biology, 2014, 28, 302-314.	4.7	23
98	Mountain landscapes offer few opportunities for highâ€elevation tree species migration. Global Change Biology, 2014, 20, 1441-1451.	9.5	75
99	Shifts in plant functional types have timeâ€dependent and regionally variable impacts on dryland ecosystem water balance. Journal of Ecology, 2014, 102, 1408-1418.	4.0	45
100	Ecohydrology of Dry Regions: Storage versus Pulse Soil Water Dynamics. Ecosystems, 2014, 17, 1469-1479.	3.4	60
101	Natural Regeneration Processes in Big Sagebrush (Artemisia tridentata). Rangeland Ecology and Management, 2014, 67, 344-357.	2.3	76
102	Climate change, fire management, and ecological services in the southwestern US. Forest Ecology and Management, 2014, 327, 280-289.	3.2	134
103	Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions. Ecological Modelling, 2014, 286, 66-77.	2.5	18
104	Tree growth and competition in an oldâ€growth <i><scp>P</scp>icea abies</i> forest of boreal <scp>S</scp> weden: influence of tree spatial patterning. Journal of Vegetation Science, 2014, 25, 374-385.	2.2	70
105	Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michxdominated forests, northern Minnesota, USA. Silva Fennica, 2014, 48, .	1.3	11
106	Potential climate change impacts on temperate forest ecosystem processes. Canadian Journal of Forest Research, 2013, 43, 939-950.	1.7	35
107	Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets. International Journal of Applied Earth Observation and Geoinformation, 2013, 22, 147-160.	2.8	18
108	Thinning increases climatic resilience of red pine. Canadian Journal of Forest Research, 2013, 43, 878-889.	1.7	73

#	Article	IF	CITATIONS
109	Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. Forest Ecology and Management, 2013, 308, 178-187.	3.2	33
110	Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 2013, 23, 1735-1742.	3.8	265
111	Impacts of post-harvest slash and live-tree retention on biomass and nutrient stocks in Populus tremuloides Michxdominated forests, northern Minnesota, USA. Forest Ecology and Management, 2013, 291, 278-288.	3.2	35
112	Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory. Forest Ecology and Management, 2013, 292, 75-85.	3.2	37
113	Structure and development of old-growth, unmanaged second-growth, and extended rotation Pinus resinosa forests in Minnesota, USA. Forest Ecology and Management, 2013, 291, 110-118.	3.2	35
114	Influence of Disturbance on Temperate Forest Productivity. Ecosystems, 2013, 16, 95-110.	3.4	47
115	Woody Debris Volume Depletion Through Decay: Implications for Biomass and Carbon Accounting. Ecosystems, 2013, 16, 1262-1272.	3.4	66
116	Ecological Impacts of Energy-Wood Harvests: Lessons from Whole-Tree Harvesting and Natural Disturbance. Journal of Forestry, 2013, 111, 139-153.	1.0	41
117	Incorporating temperatureâ€sensitive <i>Q</i> ₁₀ and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 77-90.	3.0	40
118	Carbon stocks across a chronosequence of thinned and unmanaged red pine (<i>Pinus resinosa</i>) stands. Ecological Applications, 2012, 22, 1297-1307.	3.8	48
119	Recognizing tradeâ€offs in multiâ€objective land management. Frontiers in Ecology and the Environment, 2012, 10, 210-216.	4.0	244
120	Recreational Trails as Corridors for Alien Plants in the Rocky Mountains, USA. Western North American Naturalist, 2012, 72, 507-533.	0.4	11
121	Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. Forest Ecology and Management, 2012, 267, 209-214.	3.2	66
122	Ecohydrology of dry regions of the United States: water balance consequences of small precipitation events. Ecohydrology, 2012, 5, 46-53.	2.4	36
123	Ecohydrological niche of sagebrush ecosystems. Ecohydrology, 2012, 5, 453-466.	2.4	89
124	Consequences of declining snow accumulation for water balance of midâ€latitude dry regions. Global Change Biology, 2012, 18, 1988-1997.	9.5	55
125	Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography, 2012, 35, 374-384.	4.5	64
126	Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. Forest Ecology and Management, 2011, 262, 803-816.	3.2	234

#	Article	IF	CITATIONS
127	Singular and interactive effects of blowdown, salvage logging, and wildfire in sub-boreal pine systems. Forest Ecology and Management, 2011, 262, 2070-2078.	3.2	67
128	The efficacy of salvage logging in reducing subsequent fire severity in conifer-dominated forests of Minnesota, USA., 2011, 21, 1895-1901.		61
129	Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity. Ecosystems, 2011, 14, 975-986.	3.4	11
130	An Evolving Research Agenda at the Marcell Experimental Forest., 2011,, 73-91.		1
131	Carbon pools and fluxes in small temperate forest landscapes: Variability and implications for sampling design. Forest Ecology and Management, 2010, 259, 1245-1254.	3.2	36
132	Thinning method and intensity influence long-term mortality trends in a red pine forest. Forest Ecology and Management, 2010, 260, 1138-1148.	3.2	44
133	Age-related patterns of forest complexity and carbon storage in pine and aspen–birch ecosystems of northern Minnesota, USA. Canadian Journal of Forest Research, 2010, 40, 401-409.	1.7	76
134	A new method for evaluating forest thinning: growth dominance in managed Pinus resinosa stands. Canadian Journal of Forest Research, 2010, 40, 843-849.	1.7	49
135	Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment. Canadian Journal of Forest Research, 2009, 39, 802-813.	1.7	48
136	Ecohydrology of dry regions of the United States: precipitation pulses and intraseasonal drought. Ecohydrology, 2009, 2, 173-181.	2.4	58
137	A comparison of thinning methods in red pine: consequences for stand-level growth and tree diameter. Canadian Journal of Forest Research, 2009, 39, 489-496.	1.7	35
138	Regulating overabundant ungulate populations: An example for elk in Rocky Mountain National Park, Colorado. Journal of Environmental Management, 2008, 86, 520-528.	7.8	23
139	Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests. Global Change Biology, 2008, 14, 2882-2897.	9.5	164
140	Forest structure estimation and pattern exploration from discrete-return lidar in subalpine forests of the central Rockies. Canadian Journal of Forest Research, 2008, 38, 2081-2096.	1.7	35
141	Patterns of growth dominance in forests of the Rocky Mountains, USA. Forest Ecology and Management, 2006, 236, 193-201.	3.2	95
142	Controls over invasion of <i>Bromus tectorum</i> : The importance of climate, soil, disturbance and seed availability. Journal of Vegetation Science, 2006, 17, 693-704.	2.2	68
143	The Influence of Climate, Soils, Weather, and Land Use on Primary Production and Biomass Seasonality in the US Great Plains. Ecosystems, 2006, 9, 934-950.	3.4	48
144	Ecohydrology and the Partitioning AET Between Transpiration and Evaporation in a Semiarid Steppe. Ecosystems, 2006, 9, 756-767.	3.4	112

#	Article	IF	CITATIONS
145	Controls over invasion of Bromus tectorum: The importance of climate, soil, disturbance and seed availability. Journal of Vegetation Science, 2006, 17, 693.	2.2	79
146	THE IMPACT OF CROPPING ON PRIMARY PRODUCTION IN THE U.S. GREAT PLAINS. Ecology, 2005, 86, 1863-1872.	3.2	56
147	The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net primary productivity. Remote Sensing of Environment, 2005, 96, 246-255.	11.0	71
148	Compensation: an alternative method for analyzing diversity-productivity experiments. Oikos, 2002, 96, 411-420.	2.7	26