Mohd Sukor Su'ait

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2039268/publications.pdf

Version: 2024-02-01

72 papers 1,686 citations

257450 24 h-index 315739 38 g-index

72 all docs 72 docs citations

times ranked

72

1858 citing authors

#	Article	IF	CITATIONS
1	Performance-Enhancing Sulfur-Doped TiO2 Photoanodes for Perovskite Solar Cells. Applied Sciences (Switzerland), 2022, 12, 429.	2.5	3
2	Perspectives in biopolymer/graphene-based composite application: Advances, challenges, and recommendations. Nanotechnology Reviews, 2022, 11, 1525-1554.	5.8	8
3	Effects of Isocyanate-to-Polyols (NCO/OH) Ratio on Bio-based Polyurethane Film from Palm Kernel Oil based Monoester Polyols (PKO-p) for Polymer Electrolytes Application. Medziagotyra, 2022, 28, 322-332.	0.2	O
4	Influence of Electron beam radiation on the properties of Surface-Modified Titania-Filled gel polymer electrolytes using vinyltriethoxysilane (VTES) for lithium battery application. Results in Chemistry, 2022, 4, 100383.	2.0	1
5	Oxygen vacancy suppress room temperature ferromagnetism of p-type Cu doped ZnO: Synthesis and density functional theory., 2022, 167, 207291.		5
6	Electronic and thermoelectric properties of chalcopyrite compounds Cu2(XY)S4 (X = Zn, Cd and Y	= Sn, 1.8) Tj ₁ ETQq0 0 0
7	Ab-initio, Monte Carlo and experimental investigation on structural, electronic and magnetic properties of Zn1-Ni O nanoparticles prepared via sol-gel method. Journal of Alloys and Compounds, 2021, 854, 157142.	5.5	10
8	Novel approach for the utilization of ionic liquid-based cellulose derivative biosourced polymer electrolytes in safe sodium-ion batteries. Polymer Bulletin, 2021, 78, 5355-5377.	3.3	24
9	Structural, morphological and transport properties of Ni doped ZnO thin films deposited by thermal co-evaporation method. Materials Science in Semiconductor Processing, 2021, 123, 105530.	4.0	29
10	Free-Radical Photopolymerization of Acrylonitrile Grafted onto Epoxidized Natural Rubber. Polymers, 2021, 13, 660.	4.5	16
11	NickelPalladium alloy–reduced graphene oxide as counter electrode for dye-sensitized solar cells. Journal of Molecular Liquids, 2021, 326, 115289.	4.9	18
12	Schiff base complex/TiO2 chemosensor for visual detection of food freshness level. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119129.	3.9	8
13	Adhesion improvement of polyaniline counter electrode in dye-sensitized solar cell using bio-based alkyd. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
14	The Influences of 1-Butyl-3-Methylimidazolium Tetrafluoroborate on Electrochemical, Thermal and Structural Studies as Ionic Liquid Gel Polymer Electrolyte. Polymers, 2021, 13, 1277.	4.5	11
15	Regenerable and selective histamine impedimetric sensor based on hydroxyl functionalised Schiff base complex electrode. Electrochimica Acta, 2021, 379, 138186.	5.2	15
16	In-situ UV cured acrylonitrile grafted epoxidized natural rubber (ACN-g-ENR) – LiTFSI solid polymer electrolytes for lithium-ion rechargeable batteries. Reactive and Functional Polymers, 2021, 164, 104938.	4.1	8
17	Promising porous Cu2ZnSnS4 electrode composition synthesized by acetate route-based sol-gel process for lithium battery application. Ceramics International, 2021, 47, 20717-20724.	4.8	8
18	Chitosan as a paradigm for biopolymer electrolytes in solid-state dye-sensitised solar cells. Polymer, 2021, 230, 124092.	3.8	81

#	Article	IF	CITATIONS
19	Investigation on size and conductivity of polyaniline nanofiber synthesised by surfactant-free polymerization. Journal of Materials Research and Technology, 2021, 14, 255-261.	5.8	17
20	Sol-gel prepared Cu2ZnSnS4 (CZTS) semiconductor thin films: Role of solvent removal processing temperature. Materials Science in Semiconductor Processing, 2021, 132, 105874.	4.0	14
21	Suppressing the secondary phases via N2 preheating of Cu2ZnSnS4 thin films with the addition of oleylamine and/or 1-Dodecanethiol solvents. Inorganic Chemistry Communication, 2021, 134, 109031.	3.9	2
22			

#	Article	IF	Citations
37	Electronic and Magnetic Properties of Mn-doped and (Mn,C)-codoped w-AlN with the Presence of N Vacancy. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3691-3697.	1.8	9
38	Theoretical insight into magnetic and thermoelectric properties of Au doped ZnO compounds using density functional theory. Physica B: Condensed Matter, 2019, 562, 67-74.	2.7	25
39	In situ sol–gel preparation of ZrO2 in nano-composite polymer electrolyte of PVDF-HFP/MG49 for lithium-ion polymer battery. Journal of Sol-Gel Science and Technology, 2019, 90, 665-675.	2.4	22
40	Impact of position and concentration of sodium on the photovoltaic properties of zinc oxide solar cells. Physica B: Condensed Matter, 2019, 560, 28-36.	2.7	21
41	Synthesis and characterizations of o-nitrochitosan based biopolymer electrolyte for electrochemical devices. PLoS ONE, 2019, 14, e0212066.	2.5	33
42	Bio-Based Polycationic Polyurethane as an Ion-Selective Membrane for Nitrate Tapered Optical Fiber Sensors. IEEE Access, 2019, 7, 157103-157112.	4.2	6
43	Characteristics of ionically conducting jatropha oil-based polyurethane acrylate gel electrolyte doped with potassium iodide. Materials Chemistry and Physics, 2019, 222, 110-117.	4.0	27
44	Frontispiece: Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European Journal, 2018, 24, .	3.3	1
45	Palm-based polyurethane-ionic liquid gel polymer electrolyte for quasi-solid state dye sensitized solar cell. Industrial Crops and Products, 2018, 113, 406-413.	5.2	32
46	Progress towards highly stable and lead-free perovskite solar cells. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	3.6	31
47	Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European Journal, 2018, 24, 3083-3100.	3.3	118
48	Signal to Noise Improvement Ratio of TDM-FBG Sensor Based on Golay Complementary Codes. , 2018, , .		2
49	Enhancement of Plasticizing Effect on Bio-Based Polyurethane Acrylate Solid Polymer Electrolyte and Its Properties. Polymers, 2018, 10, 1142.	4.5	26
50	Ionic Conductive Polyurethane-Graphene Nanocomposite for Performance Enhancement of Optical Fiber Bragg Grating Temperature Sensor. IEEE Access, 2018, 6, 47355-47363.	4.2	29
51	P-type Cu2ZnSnS4 as Multifunctional Material for Photovoltaic and Thermoelectric Application: Theoretical Investigation. Jurnal Kejuruteraan, 2018, SI1, 15-22.	0.3	3
52	Effects of Iodide/Triiodide (I–/I3 –) Ratios on Palm Based Polyurethane Polymer Electrolyte for Solid-State Dye-Sensitized Solar Cell. Jurnal Kejuruteraan, 2018, SI1, 63-68.	0.3	6
53	Kajian Elektrolit Polimer berasaskan Getah Asli Terubah Suai (MG49) dalam Sel Suria Terpeka Pewarna. Sains Malaysiana, 2018, 47, 2667-2676.	0.5	3
54	Charge-Discharge Characteristics Improvement Through Optimization of Voltage Range for LiNiCoMnO2 Electrode for High Energy Density Lithium-Ion Batteries. Jurnal Kejuruteraan, 2018, 30, 229-234.	0.3	1

#	Article	IF	CITATIONS
55	Battery management systems (BMS) optimization for electric vehicles (EVs) in Malaysia. AIP Conference Proceedings, 2017, , .	0.4	3
56	TiO ₂ -SiO ₂ -Reinforced Methylated Grafted Natural Rubber (MG49-TiO ₂ -SiO ₂) Polymer Nanocomposites: Preparation, Optimization and Characterization. Polymers and Polymer Composites, 2016, 24, 747-754.	1.9	4
57	Effect of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on the properties of poly(glycidyl methacrylate) based solid polymer electrolytes. Russian Journal of Electrochemistry, 2016, 52, 362-373.	0.9	12
58	Synthesis of palm-based polyurethane-LiClO4 via prepolymerization. AIP Conference Proceedings, 2015, , .	0.4	0
59	Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy, 2015, 115, 452-470.	6.1	248
60	The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. International Journal of Hydrogen Energy, 2014, 39, 3005-3017.	7.1	76
61	Polymer electrolyte for photoelectrochemical cell and dye-sensitized solar cell: a brief review. lonics, 2014, 20, 1201-1205.	2.4	16
62	Production of Cu2(Zn,Fe)SnS4 powders for thin film solar cell by high energy ball milling. Journal of Power Sources, 2013, 230, 70-75.	7.8	29
63	Preparation and characterization of blended solid polymer electrolyte 49% poly(methyl) Tj ETQq1 1 0.784314 rgB of Solid State Electrochemistry, 2012, 16, 2275-2282.	T /Overloc 2.5	k 10 Tf 50 4 11
64	Morphological, infrared, and ionic conductivity studies of poly(ethylene oxide)–49% poly(methyl) Tj ETQq0 0 0 0 Journal of Applied Polymer Science, 2012, 124, 4222-4229.	rgBT /Over 2.6	lock 10 Tf 5
65	Effect of lithium salt concentrations on blended 49% poly(methyl methacrylate) grafted natural rubber and poly(methyl methacrylate) based solid polymer electrolyte. Electrochimica Acta, 2011, 57, 123-131.	5.2	64
66	Study of MG49-PMMA Based Solid Polymer Electrolyte. Open Materials Science Journal, 2011, 5, 170-177.	0.2	30
67	lonic conductivity studies of 49% poly(methyl methacrylate)-grafted natural rubber-based solid polymer electrolytes. Ionics, 2009, 15, 497-500.	2.4	33
68	Preparation and characterization of PMMA–MG49–LiClO ₄ solid polymeric electrolyte. Journal Physics D: Applied Physics, 2009, 42, 055410.	2.8	39
69	Preparation and characterization of PVC–LiClO4 based composite polymer electrolyte. Physica B: Condensed Matter, 2008, 403, 4128-4131.	2.7	26
70	Properties of Gel Polymer Electrolyte Based Poly(Vinylidine Fluoride-Ño-Hexafluoropropylene) (PVdF-HFP), Lithium Perchlorate (LiClO ₄) and 1-Butyl-3-Methylimmidazoliumhexafluorophosphate [PF ₆]. Solid State Phenomena, 0, 317, 434-439.	0.3	0
71	Poly(Vinyl Alcohol)/ N-Methylene Phosphonic Chitosan/ 2-Hydroxyethylammonium Formate (PVA/NMPC/2-HEAF) Membrane for Fuel Cell Application. Solid State Phenomena, 0, 317, 440-446.	0.3	O
72	Supercapacitor performance gains from structural modification of carbon electrodes using gamma radiations. Journal of Electrochemical Science and Engineering, 0, , .	3.5	1