Boris C Bernhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2039056/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Neural Basis of Empathy. Annual Review of Neuroscience, 2012, 35, 1-23.	5.0	769
2	The Neural Basis of Empathy. Annual Review of Neuroscience, 2012, 35, 1-23.	5.0	439
3	Graph-Theoretical Analysis Reveals Disrupted Small-World Organization of Cortical Thickness Correlation Networks in Temporal Lobe Epilepsy. Cerebral Cortex, 2011, 21, 2147-2157.	1.6	396
4	The default mode network in cognition: a topographical perspective. Nature Reviews Neuroscience, 2021, 22, 503-513.	4.9	368
5	Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain, 2018, 141, 391-408.	3.7	352
6	Gradients of structure–function tethering across neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21219-21227.	3.3	345
7	Microstructural and functional gradients are increasingly dissociated in transmodal cortices. PLoS Biology, 2019, 17, e3000284.	2.6	332
8	Atypical functional connectome hierarchy in autism. Nature Communications, 2019, 10, 1022.	5.8	326
9	Exploring the role of the posterior middle temporal gyrus in semantic cognition: Integration of anterior temporal lobe with executive processes. NeuroImage, 2016, 137, 165-177.	2.1	290
10	BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Communications Biology, 2020, 3, 103.	2.0	285
11	Impulse Control and Underlying Functions of the Left DLPFC Mediate Age-Related and Age-Independent Individual Differences in Strategic Social Behavior. Neuron, 2012, 73, 1040-1051.	3.8	241
12	Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy. Epilepsy and Behavior, 2015, 50, 162-170.	0.9	210
13	Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10154-10159.	3.3	201
14	Advances in MRI for 'cryptogenic' epilepsies. Nature Reviews Neurology, 2011, 7, 99-108.	4.9	197
15	Cortical thickness analysis in temporal lobe epilepsy. Neurology, 2010, 74, 1776-1784.	1.5	193
16	Imaging structural and functional brain networks in temporal lobe epilepsy. Frontiers in Human Neuroscience, 2013, 7, 624.	1.0	185
17	Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training. Science Advances, 2017, 3, e1700489.	4.7	184
18	Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: Insights on the relation between mesiotemporal connectivity and cortical atrophy. NeuroImage, 2008, 42, 515-524.	2.1	174

#	Article	IF	CITATIONS
19	Thalamo–cortical network pathology in idiopathic generalized epilepsy: Insights from MRI-based morphometric correlation analysis. NeuroImage, 2009, 46, 373-381.	2.1	157
20	Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology, 2014, 83, 48-55.	1.5	148
21	Transcriptomic and cellular decoding of regional brain vulnerability to neurogenetic disorders. Nature Communications, 2020, 11, 3358.	5.8	141
22	MRI analysis in temporal lobe epilepsy: Cortical thinning and white matter disruptions are related to side of seizure onset. Epilepsia, 2011, 52, 2257-2266.	2.6	131
23	Individual variation in intentionality in the mind-wandering state is reflected in the integration of the default-mode, fronto-parietal, and limbic networks. NeuroImage, 2017, 146, 226-235.	2.1	127
24	Dispersion of functional gradients across the adult lifespan. NeuroImage, 2020, 222, 117299.	2.1	123
25	White matter abnormalities across different epilepsy syndromes in adults: an ENIGMA-Epilepsy study. Brain, 2020, 143, 2454-2473.	3.7	123
26	Magnetic resonance imaging pattern learning in temporal lobe epilepsy: Classification and prognostics. Annals of Neurology, 2015, 77, 436-446.	2.8	120
27	A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy. Neurology, 2017, 89, 506-516.	1.5	118
28	The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Annals of Neurology, 2016, 80, 142-153.	2.8	116
29	Spatial patterns of water diffusion along white matter tracts in temporal lobe epilepsy. Neurology, 2012, 79, 455-462.	1.5	111
30	Selective Disruption of Sociocognitive Structural Brain Networks in Autism and Alexithymia. Cerebral Cortex, 2014, 24, 3258-3267.	1.6	110
31	A molecular gradient along the longitudinal axis of the human hippocampus informs large-scale behavioral systems. Nature Communications, 2020, 11, 960.	5.8	100
32	Topographic gradients of intrinsic dynamics across neocortex. ELife, 2020, 9, .	2.8	99
33	Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study. Science Advances, 2020, 6, .	4.7	97
34	Shaping brain structure: Genetic and phylogenetic axes of macroscale organization of cortical thickness. Science Advances, 2020, 6, .	4.7	97
35	Toward Neurosubtypes in Autism. Biological Psychiatry, 2020, 88, 111-128.	0.7	97
36	Shifts in myeloarchitecture characterise adolescent development of cortical gradients. ELife, 2019, 8, .	2.8	97

#	Article	IF	CITATIONS
37	Mapping thalamocortical network pathology in temporal lobe epilepsy. Neurology, 2012, 78, 129-136.	1.5	95
38	The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nature Methods, 2021, 18, 698-700.	9.0	95
39	Tracking thoughts: Exploring the neural architecture of mental time travel during mind-wandering. NeuroImage, 2017, 147, 272-281.	2.1	91
40	Multidimensional Neuroanatomical Subtyping of Autism Spectrum Disorder. Cerebral Cortex, 2018, 28, 3578-3588.	1.6	91
41	Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks. Cerebral Cortex, 2017, 27, bhv319.	1.6	89
42	Multicenter mapping of structural network alterations in autism. Human Brain Mapping, 2015, 36, 2364-2373.	1.9	87
43	Toward a connectivity gradient-based framework for reproducible biomarker discovery. NeuroImage, 2020, 223, 117322.	2.1	87
44	Classifying the wandering mind: Revealing the affective content of thoughts during task-free rest periods. NeuroImage, 2014, 97, 107-116.	2.1	86
45	The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. Brain, 2016, 139, 2431-2440.	3.7	85
46	Review: Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence. Neuropathology and Applied Neurobiology, 2018, 44, 70-90.	1.8	85
47	Multiscale Structure–Function Gradients in the Neonatal Connectome. Cerebral Cortex, 2020, 30, 47-58.	1.6	83
48	Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology, 2013, 81, 1840-1847.	1.5	82
49	Neuroimaging and connectomics of drugâ€resistant epilepsy at multiple scales: From focal lesions to macroscale networks. Epilepsia, 2019, 60, 593-604.	2.6	82
50	The spectrum of structural and functional network alterations in malformations of cortical development. Brain, 2017, 140, 2133-2143.	3.7	80
51	Temporal lobe epilepsy. Neurology, 2019, 92, e2209-e2220.	1.5	80
52	Multimodal MRI profiling of focal cortical dysplasia type II. Neurology, 2017, 88, 734-742.	1,5	78
53	Network structure of the mouse brain connectome with voxel resolution. Science Advances, 2020, 6, .	4.7	77
54	Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology, 2016, 86, 643-650.	1.5	75

#	Article	IF	CITATIONS
55	Multi-contrast submillimetric 3 Tesla hippocampal subfield segmentation protocol and dataset. Scientific Data, 2015, 2, 150059.	2.4	70
56	How do we decide what to do? Resting-state connectivity patterns and components of self-generated thought linked to the development of more concrete personal goals. Experimental Brain Research, 2018, 236, 2469-2481.	0.7	68
57	A multi-scale cortical wiring space links cellular architecture and functional dynamics in the human brain. PLoS Biology, 2020, 18, e3000979.	2.6	68
58	Age-related differences in function and structure of rSMG and reduced functional connectivity with DLPFC explains heightened emotional egocentricity bias in childhood. Social Cognitive and Affective Neuroscience, 2015, 10, 302-310.	1.5	66
59	Epilepsy and brain network hubs. Epilepsia, 2022, 63, 537-550.	2.6	66
60	Medial prefrontal and anterior cingulate cortical thickness predicts shared individual differences in self-generated thought and temporal discounting. NeuroImage, 2014, 90, 290-297.	2.1	65
61	Functional connectome contractions in temporal lobe epilepsy: Microstructural underpinnings and predictors of surgical outcome. Epilepsia, 2020, 61, 1221-1233.	2.6	65
62	Functional network alterations and their structural substrate in drug-resistant epilepsy. Frontiers in Neuroscience, 2014, 8, 411.	1.4	64
63	Preferential susceptibility of limbic cortices to microstructural damage in temporal lobe epilepsy: A quantitative T1 mapping study. NeuroImage, 2018, 182, 294-303.	2.1	63
64	Differences in subcortico-cortical interactions identified from connectome and microcircuit models in autism. Nature Communications, 2021, 12, 2225.	5.8	63
65	In vivo <scp>MRI</scp> signatures of hippocampal subfield pathology in intractable epilepsy. Human Brain Mapping, 2016, 37, 1103-1119.	1.9	61
66	Structural changes in socio-affective networks: Multi-modal MRI findings in long-term meditation practitioners. Neuropsychologia, 2018, 116, 26-33.	0.7	58
67	Multidimensional associations between cognition and connectome organization in temporal lobe epilepsy. NeuroImage, 2020, 213, 116706.	2.1	58
68	The many dimensions of human hippocampal organization and (dys)function. Trends in Neurosciences, 2021, 44, 977-989.	4.2	57
69	The neural correlates of ongoing conscious thought. IScience, 2021, 24, 102132.	1.9	56
70	Knowing what from where: Hippocampal connectivity with temporoparietal cortex at rest is linked to individual differences in semantic and topographic memory. NeuroImage, 2017, 152, 400-410.	2.1	55
71	Signal diffusion along connectome gradients and inter-hub routing differentially contribute to dynamic human brain function. NeuroImage, 2021, 224, 117429.	2.1	54
72	Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex. Nature Communications, 2022, 13, 2341.	5.8	54

#	Article	IF	CITATIONS
73	The relationship between individual variation in macroscale functional gradients and distinct aspects of ongoing thought. NeuroImage, 2020, 220, 117072.	2.1	53
74	Automatic hippocampal segmentation in temporal lobe epilepsy: Impact of developmental abnormalities. NeuroImage, 2012, 59, 3178-3186.	2.1	52
75	Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Research, 2018, 140, 29-38.	0.8	52
76	Myeloarchitecture gradients in the human insula: Histological underpinnings and association to intrinsic functional connectivity. NeuroImage, 2020, 216, 116859.	2.1	51
77	Microstructure-Informed Connectomics: Enriching Large-Scale Descriptions of Healthy and Diseased Brains. Brain Connectivity, 2019, 9, 113-127.	0.8	50
78	Community-informed connectomics of the thalamocortical system in generalized epilepsy. Neurology, 2019, 93, e1112-e1122.	1.5	50
79	Connectome biomarkers of drugâ€resistant epilepsy. Epilepsia, 2021, 62, 6-24.	2.6	48
80	The <scp>ENIGMAâ€Epilepsy</scp> working group: Mapping disease from large data sets. Human Brain Mapping, 2022, 43, 113-128.	1.9	47
81	An expanding manifold in transmodal regions characterizes adolescent reconfiguration of structural connectome organization. ELife, 2021, 10, .	2.8	47
82	Convergence of cortical types and functional motifs in the human mesiotemporal lobe. ELife, 2020, 9, .	2.8	46
83	The psychological correlates of distinct neural states occurring during wakeful rest. Scientific Reports, 2020, 10, 21121.	1.6	44
84	Structural Covariance Networks of the Dorsal Anterior Insula Predict Females' Individual Differences in Empathic Responding. Cerebral Cortex, 2014, 24, 2189-2198.	1.6	43
85	The Superficial White Matter in Autism and Its Role in Connectivity Anomalies and Symptom Severity. Cerebral Cortex, 2019, 29, 4415-4425.	1.6	43
86	The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging. ELife, 2021, 10, .	2.8	42
87	Multiscale communication in cortico-cortical networks. NeuroImage, 2021, 243, 118546.	2.1	42
88	Gradients in brain organization. Neurolmage, 2022, 251, 118987.	2.1	42
89	Subregional Mesiotemporal Network Topology Is Altered in Temporal Lobe Epilepsy. Cerebral Cortex, 2016, 26, 3237-3248.	1.6	40
90	Association of Short-term Change in Leukocyte Telomere Length With Cortical Thickness and Outcomes of Mental Training Among Healthy Adults. JAMA Network Open, 2019, 2, e199687.	2.8	40

#	Article	IF	CITATIONS
91	Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical differentiation of unimodal and transmodal cortex. NeuroImage, 2022, 256, 119220.	2.1	39
92	Substrates of metacognition on perception and metacognition on higherâ€order cognition relate to different subsystems of the mentalizing network. Human Brain Mapping, 2016, 37, 3388-3399.	1.9	38
93	A connectome-based mechanistic model of focal cortical dysplasia. Brain, 2019, 142, 688-699.	3.7	38
94	Developmental MRI markers cosegregate juvenile patients with myoclonic epilepsy and their healthy siblings. Neurology, 2019, 93, e1272-e1280.	1.5	35
95	Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia. Psychological Medicine, 2023, 53, 771-784.	2.7	35
96	Macroscale and microcircuit dissociation of focal and generalized human epilepsies. Communications Biology, 2020, 3, 244.	2.0	34
97	Neuroimaging-Based Phenotyping of the Autism Spectrum. Current Topics in Behavioral Neurosciences, 2016, 30, 341-355.	0.8	33
98	Targeting ageâ€related differences in brain and cognition with multimodal imaging and connectome topography profiling. Human Brain Mapping, 2019, 40, 5213-5230.	1.9	33
99	Cortical gradients of functional connectivity are robust to state-dependent changes following sleep deprivation. Neurolmage, 2021, 226, 117547.	2.1	31
100	Age differences in the functional architecture of the human brain. Cerebral Cortex, 2022, 33, 114-134.	1.6	31
101	Time-resolved structure-function coupling in brain networks. Communications Biology, 2022, 5, .	2.0	31
102	Gray matter structural compromise is equally distributed in left and right temporal lobe epilepsy. Human Brain Mapping, 2016, 37, 515-524.	1.9	30
103	Microstructural imaging in temporal lobe epilepsy: Diffusion imaging changes relate to reduced neurite density. NeuroImage: Clinical, 2020, 26, 102231.	1.4	30
104	Reductions in task positive neural systems occur with the passage of time and are associated with changes in ongoing thought. Scientific Reports, 2020, 10, 9912.	1.6	29
105	The structural basis of semantic control: Evidence from individual differences in cortical thickness. Neurolmage, 2018, 181, 480-489.	2.1	28
106	MRI essentials in epileptology: a review from the ILAE Imaging Taskforce. Epileptic Disorders, 2020, 22, 421-437.	0.7	28
107	Facing up to the wandering mind: Patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. NeuroImage, 2020, 214, 116765.	2.1	28
108	Altered communication dynamics reflect cognitive deficits in temporal lobe epilepsy. Epilepsia, 2021, 62, 1022-1033.	2.6	28

#	Article	IF	CITATIONS
109	A Surface Patch-Based Segmentation Method for Hippocampal Subfields. Lecture Notes in Computer Science, 2016, , 379-387.	1.0	28
110	Atypical neural topographies underpin dysfunctional pattern separation in temporal lobe epilepsy. Brain, 2021, 144, 2486-2498.	3.7	26
111	Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification. Brain, 2022, 145, 897-908.	3.7	26
112	Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study. NeuroImage: Clinical, 2021, 31, 102765.	1.4	25
113	Inter-individual body mass variations relate to fractionated functional brain hierarchies. Communications Biology, 2021, 4, 735.	2.0	25
114	Connectivity alterations in autism reflect functional idiosyncrasy. Communications Biology, 2021, 4, 1078.	2.0	25
115	Atypical functional connectome hierarchy impacts cognition in temporal lobe epilepsy. Epilepsia, 2021, 62, 2589-2603.	2.6	25
116	A tale of two gradients: differences between the left and right hemispheres predict semantic cognition. Brain Structure and Function, 2022, 227, 631-654.	1.2	25
117	Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Molecular Psychiatry, 2022, 27, 2114-2125.	4.1	25
118	Latent Clinical-Anatomical Dimensions of Schizophrenia. Schizophrenia Bulletin, 2020, 46, 1426-1438.	2.3	24
119	Wholeâ€brain functional connectivity correlates of obesity phenotypes. Human Brain Mapping, 2020, 41, 4912-4924.	1.9	22
120	Variability in Brain Structure and Function Reflects Lack of Peer Support. Cerebral Cortex, 2021, 31, 4612-4627.	1.6	22
121	A systemsâ€level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	22
122	Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study. Molecular Psychiatry, 2022, 27, 1167-1176.	4.1	22
123	Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain, 2023, 146, 935-953.	3.7	22
124	Brain iron redistribution in mesial temporal lobe epilepsy: a susceptibility-weighted magnetic resonance imaging study. BMC Neuroscience, 2014, 15, 117.	0.8	21
125	Structural Connectivity Gradients of the Temporal Lobe Serve as Multiscale Axes of Brain Organization and Cortical Evolution. Cerebral Cortex, 2021, 31, 5151-5164.	1.6	21
126	Association between carotid atheroma and cerebral cortex structure at age 73 years. Annals of Neurology, 2018, 84, 576-587.	2.8	20

#	Article	IF	CITATIONS
127	Fast oscillationsÂ>40ÂHz localize the epileptogenic zone: An electrical source imaging study using high-density electroencephalography. Clinical Neurophysiology, 2021, 132, 568-580.	0.7	20
128	Perceptual coupling and decoupling of the default mode network during mind-wandering and reading. ELife, 2022, 11, .	2.8	20
129	Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain. Cerebral Cortex, 2023, 33, 1782-1798.	1.6	20
130	Topographic principles of cortical fluidâ€attenuated inversion recovery signal in temporal lobe epilepsy. Epilepsia, 2018, 59, 627-635.	2.6	19
131	Individual variation in patterns of task focused, and detailed, thought are uniquely associated within the architecture of the medial temporal lobe. NeuroImage, 2019, 202, 116045.	2.1	19
132	A Statistical Model of Right Ventricle in Tetralogy of Fallot for Prediction of Remodelling and Therapy Planning. Lecture Notes in Computer Science, 2009, 12, 214-221.	1.0	19
133	Dissecting the midlife crisis: disentangling social, personality and demographic determinants in social brain anatomy. Communications Biology, 2021, 4, 728.	2.0	18
134	Multivariate Hippocampal Subfield Analysis of Local MRI Intensity and Volume: Application to Temporal Lobe Epilepsy. Lecture Notes in Computer Science, 2014, 17, 170-178.	1.0	18
135	Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy. Brain, 2022, 145, 1285-1298.	3.7	18
136	Adolescent development of multiscale structural wiring and functional interactions in the human connectome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
137	Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging. PLoS Biology, 2022, 20, e3001627.	2.6	17
138	Tracking mood fluctuations with functional network patterns. Social Cognitive and Affective Neuroscience, 2019, 14, 47-57.	1.5	16
139	Corticoâ€striatoâ€thalamoâ€cerebellar networks of structural covariance underlying different epilepsy syndromes associated with generalized tonic–clonic seizures. Human Brain Mapping, 2021, 42, 1102-1115.	1.9	16
140	An individual differences analysis of the neurocognitive architecture of the semantic system at rest. Brain and Cognition, 2016, 109, 112-123.	0.8	13
141	Population variability in social brain morphology for social support, household size and friendship satisfaction. Social Cognitive and Affective Neuroscience, 2020, 15, 635-647.	1.5	13
142	Automated Detection of Epileptogenic Cortical Malformations Using Multimodal MRI. Lecture Notes in Computer Science, 2017, , 349-356.	1.0	12
143	Eventâ€based modeling in temporal lobe epilepsy demonstrates progressive atrophy from crossâ€sectional data. Epilepsia, 2022, 63, 2081-2095.	2.6	11
144	Temporal lobe epilepsy is a progressive disorder. Nature Reviews Neurology, 2010, 6, 179-179.	4.9	10

#	Article	IF	CITATIONS
145	Word up – Experiential and neurocognitive evidence for associations between autistic symptomology and a preference for thinking in the form of words. Cortex, 2020, 128, 88-106.	1.1	10
146	Atypical Integration of Sensory-to-Transmodal Functional Systems Mediates Symptom Severity in Autism. Frontiers in Psychiatry, 2021, 12, 699813.	1.3	10
147	Neurobehavioral and Clinical Comorbidities in Epilepsy: The Role of White Matter Network Disruption. Neuroscientist, 2024, 30, 105-131.	2.6	10
148	A Riemannian approach to predicting brain function from the structural connectome. Neurolmage, 2022, 257, 119299.	2.1	10
149	Antiepileptic Drug of Levetiracetam Decreases Centrotemporal Spike-Associated Activation in Rolandic Epilepsy. Frontiers in Neuroscience, 2018, 12, 796.	1.4	9
150	A convergent structure–function substrate of cognitive imbalances in autism. Cerebral Cortex, 2023, 33, 1566-1580.	1.6	9
151	Deep Convolutional Networks for Automated Detection of Epileptogenic Brain Malformations. Lecture Notes in Computer Science, 2018, , 490-497.	1.0	8
152	Neurocognitive patterns dissociating semantic processing from executive control are linked to more detailed off-task mental time travel. Scientific Reports, 2020, 10, 11904.	1.6	8
153	Multimodal connectome biomarkers of cognitive and affective dysfunction in the common epilepsies. Network Neuroscience, 2022, 6, 320-338.	1.4	8
154	Multimodal computational neocortical anatomy in pediatric hippocampal sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 1200-1210.	1.7	7
155	Imaging characteristics of temporopolar blurring in the context of hippocampal sclerosis. Epileptic Disorders, 2022, 24, 1-8.	0.7	7
156	Age of Speech Onset in Autism Relates to Structural Connectivity in the Language Network. Cerebral Cortex Communications, 2020, 1, tgaa077.	0.7	6
157	A Structure–Function Substrate of Memory for Spatial Configurations in Medial and Lateral Temporal Cortices. Cerebral Cortex, 2021, 31, 3213-3225.	1.6	6
158	ILAE Neuroimaging Task Force Highlight: harnessing optimized imaging protocols for drugâ€resistant childhood epilepsy. Epileptic Disorders, 2021, 23, 675-681.	0.7	6
159	Individual differences in gradients of intrinsic connectivity within the semantic network relate to distinct aspects of semantic cognition. Cortex, 2022, 150, 48-60.	1.1	6
160	Diagnosis-informed connectivity subtyping discovers subgroups of autism with reproducible symptom profiles. NeuroImage, 2022, 256, 119212.	2.1	6
161	Resting state signal latency assesses the propagation of intrinsic activations and estimates anti-epileptic effect of levetiracetam in Rolandic epilepsy. Brain Research Bulletin, 2020, 162, 125-131.	1.4	5
162	Recycling diagnostic MRI for empowering brain morphometric research – Critical & practical assessment on learning-based image super-resolution. NeuroImage, 2021, 245, 118687.	2.1	5

#	Article	IF	CITATIONS
163	Connectome-Based Pattern Learning Predicts Histology and Surgical Outcome of Epileptogenic Malformations of Cortical Development. Lecture Notes in Computer Science, 2017, , 390-397.	1.0	4
164	ILAE Neuroimaging Task Force highlight: Review MRI scans with semiology in mind. Epileptic Disorders, 2020, 22, 683-687.	0.7	4
165	Network Modeling of Epilepsy Using Structural and Functional MRI. , 2019, , 77-94.		3
166	Missing the forest because of the trees: slower alternations during binocular rivalry are associated with lower levels of visual detail during ongoing thought. Neuroscience of Consciousness, 2020, 2020, niaa020.	1.4	3
167	Anti-seizure medication correlated changes of cortical morphology in childhood epilepsy with centrotemporal spikes. Epilepsy Research, 2021, 173, 106621.	0.8	3
168	MRI-Based Lesion Profiling of Epileptogenic Cortical Malformations. Lecture Notes in Computer Science, 2015, , 501-509.	1.0	3
169	Distinct Functional Cortico-Striato-Thalamo-Cerebellar Networks in Genetic Generalized and Focal Epilepsies with Generalized Tonic-Clonic Seizures. Journal of Clinical Medicine, 2022, 11, 1612.	1.0	3
170	Investigating the Elements of Thought. , 2018, , .		2
171	Cortical Gradients and Their Role in Cognition. , 2022, , 242-250.		2
172	Shared and distinct patterns of atypical cortical morphometry in children with autism and anxiety. Cerebral Cortex, 2022, 32, 4565-4575.	1.6	1
173	F81. Atypical Functional Connectome Hierarchy in Autism. Biological Psychiatry, 2018, 83, S269.	0.7	0
174	Imaging White Matter Pathology in Epilepsy. , 2019, , 68-76.		0
175	Tracking Epilepsy Disease Progression with Neuroimaging. , 2019, , 217-228.		О
176	Title is missing!. , 2020, 18, e3000979.		0
177	Title is missing!. , 2020, 18, e3000979.		Ο
178	Title is missing!. , 2020, 18, e3000979.		0
179	Title is missing!. , 2020, 18, e3000979.		0
180	Title is missing!. , 2020, 18, e3000979.		0

11

#	Article	IF	CITATIONS
181	Title is missing!. , 2020, 18, e3000979.		0
182	Title is missing!. , 2020, 18, e3000979.		0
183	Title is missing!. , 2020, 18, e3000979.		0