Wusheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2038976/publications.pdf Version: 2024-02-01

		516710	434195
30	2,731	16	31
papers	citations	h-index	g-index
32	32	32	3525
all docs	docs citations	times ranked	citing authors

WUSHENCLU

#	Article	IF	CITATIONS
1	The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany, 2005, 92, 142-166.	1.7	1,605
2	Advanced genetic tools for plant biotechnology. Nature Reviews Genetics, 2013, 14, 781-793.	16.3	188
3	Plant synthetic biology. Trends in Plant Science, 2015, 20, 309-317.	8.8	144
4	Plant synthetic promoters and transcription factors. Current Opinion in Biotechnology, 2016, 37, 36-44.	6.6	115
5	Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnology, 2011, 11, 74.	3.3	69
6	Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Reports, 2020, 39, 245-257.	5.6	66
7	Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnology Journal, 2013, 11, 1135-1145.	8.3	61
8	The presence of multiple introns is essential for ERECTA expression in Arabidopsis. Rna, 2011, 17, 1907-1921.	3.5	56
9	Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnology, 2011, 11, 108.	3.3	50
10	Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theoretical and Applied Genetics, 2011, 123, 1193-206.	3.6	49
11	Computational discovery of soybean promoter <i≻cis< i="">â€regulatory elements for the construction of soybean cyst nematodeâ€inducible synthetic promoters. Plant Biotechnology Journal, 2014, 12, 1015-1026.</i≻cis<>	8.3	42
12	An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Horticulture Research, 2021, 8, 179.	6.3	38
13	Bacterial pathogen phytosensing in transgenic tobacco and <i><scp>A</scp>rabidopsis</i> plants. Plant Biotechnology Journal, 2013, 11, 43-52.	8.3	30
14	Rational design and testing of abiotic stressâ€inducible synthetic promoters from poplar <i>cis</i> â€regulatory elements. Plant Biotechnology Journal, 2021, 19, 1354-1369.	8.3	27
15	Genotype-independent plant transformation. Horticulture Research, 2022, 9, uhac047.	6.3	21
16	FaMYB9 is involved in the regulation of C6 volatile biosynthesis in strawberry. Plant Science, 2020, 293, 110422.	3.6	20
17	Synthetic biology approaches in regulation of targeted gene expression. Current Opinion in Plant Biology, 2021, 63, 102036.	7.1	19
18	Synthetic <scp>TAL</scp> effectors for targeted enhancement of transgene expression in plants. Plant Biotechnology Journal, 2014, 12, 436-446.	8.3	18

WUSHENG LIU

#	Article	IF	CITATIONS
19	Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. Biotechnology for Biofuels, 2018, 11, 122.	6.2	17
20	Transcription Coactivator ANGUSTIFOLIA3 (AN3) Regulates Leafy Head Formation in Chinese Cabbage. Frontiers in Plant Science, 2019, 10, 520.	3.6	16
21	Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass (Panicum virgatum L.). Biotechnology for Biofuels, 2019, 12, 290.	6.2	14
22	The performance of pathogenic bacterial phytosensing transgenic tobacco in the field. Plant Biotechnology Journal, 2014, 12, 755-764.	8.3	13
23	Field Studies on Dynamic Pollen Production, Deposition, and Dispersion of Glyphosate-Resistant Horseweed (Conyza canadensis). Weed Science, 2016, 64, 101-111.	1.5	11
24	A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. Plant Cell Reports, 2018, 37, 587-597.	5.6	10
25	<i>BrABF3</i> promotes flowering through the direct activation of <i>CONSTANS</i> transcription in pak choi. Plant Journal, 2022, 111, 134-148.	5.7	8
26	Transcription factor LkWOX4 is involved in adventitious root development in Larix kaempferi. Gene, 2020, 758, 144942.	2.2	7
27	New opportunities for using <i>WUS</i> / <i>BBM</i> and <i>GRF-GIF</i> genes to enhance genetic transformation of ornamental plants. Ornamental Plant Research, 2022, 2, 1-7.	0.9	5
28	Coordinated transcriptional regulation of the carotenoid biosynthesis contributes to fruit lycopene content in high-lycopene tomato genotypes. Horticulture Research, 2022, 9, .	6.3	5
29	Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (Glycine max L.) via Integrating Linkage Mapping and Association Analysis. International Journal of Molecular Sciences, 2022, 23, 2113.	4.1	2
30	Reproductive developmental transcriptome analysis of Tripidium ravennae (Poaceae). BMC Genomics, 2021, 22, 483.	2.8	1