Laura Calvillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2038784/publications.pdf Version: 2024-02-01

361413 434195 31 975 20 31 citations h-index g-index papers 32 32 32 1817 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Harnessing Molecular Fluorophores in the Carbon Dots Matrix: The Case of Safranin O. Nanomaterials, 2022, 12, 2351.	4.1	3
2	Electrocatalytic Site Activity Enhancement via Orbital Overlap in A ₂ MnRuO ₇ (A = Dy ³⁺ , Ho ³⁺ , and Er ³⁺) Pyrochlore Nanostructures. ACS Applied Energy Materials, 2021, 4, 176-185.	5.1	8
3	Hybridization of Molecular and Graphene Materials for CO ₂ Photocatalytic Reduction with Selectivity Control. Journal of the American Chemical Society, 2021, 143, 8414-8425.	13.7	64
4	Copper single-atoms embedded in 2D graphitic carbon nitride for the CO2 reduction. Npj 2D Materials and Applications, 2021, 5, .	7.9	54
5	How do H ₂ oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chemical Science, 2021, 12, 15916-15927.	7.4	5
6	Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 5805-5811.	8.0	28
7	NiO–Ni/CNT as an Efficient Hydrogen Electrode Catalyst for a Unitized Regenerative Alkaline Microfluidic Cell. ACS Applied Energy Materials, 2020, 3, 4746-4755.	5.1	18
8	In Situ Study of Graphene Oxide Quantum Dot-MoSx Nanohybrids as Hydrogen Evolution Catalysts. Surfaces, 2020, 3, 225-236.	2.3	3
9	Effect of Ni Doping on the MoS2 Structure and Its Hydrogen Evolution Activity in Acid and Alkaline Electrolytes. Surfaces, 2019, 2, 531-545.	2.3	34
10	Arene C H insertion catalyzed by ferrocene covalently heterogenized on graphene acid. Carbon, 2019, 143, 318-328.	10.3	23
11	Effect of Ba Content on the Activity of La _{1â€<i>x</i>} Ba _{<i>x</i>} MnO ₃ Towards the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1922-1927.	3.4	12
12	Inhibitive effect of Pt on Pd-hydride formation of Pd@Pt core-shell electrocatalysts: An in situ EXAFS and XRD study. Electrochimica Acta, 2018, 262, 27-38.	5.2	23
13	Enhancing the Oxygen Electroreduction Activity through Electron Tunnelling: CoO _{<i>x</i>} Ultrathin Films on Pd(100). ACS Catalysis, 2018, 8, 2343-2352.	11.2	32
14	Insights into the durability of Co–Fe spinel oxygen evolution electrocatalysts <i>via operando</i> studies of the catalyst structure. Journal of Materials Chemistry A, 2018, 6, 7034-7041.	10.3	47
15	In situ determination of the nanostructure effects on the activity, stability and selectivity of Pt-Sn ethanol oxidation catalysts. Journal of Electroanalytical Chemistry, 2018, 819, 136-144.	3.8	19
16	Molybdenum Doping Augments Platinum–Copper Oxygen Reduction Electrocatalyst. ChemSusChem, 2018, 11, 193-201.	6.8	33
17	Graphene Oxide/Iron Oxide Nanocomposites for Water Remediation. ACS Applied Nano Materials, 2018, 1, 6724-6732.	5.0	53
18	Mean Intrinsic Activity of Single Mn Sites at LaMnO ₃ Nanoparticles Towards the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 3044-3051.	3.4	23

LAURA CALVILLO

#	Article	IF	CITATIONS
19	Aerosol Synthesis of N and N-S Doped and Crumpled Graphene Nanostructures. Nanomaterials, 2018, 8, 406.	4.1	9
20	AMnO3 (A = Sr, La, Ca, Y) Perovskite Oxides as Oxygen Reduction Electrocatalysts. Topics in Catalysis, 2018, 61, 154-161.	2.8	40
21	Cobalt Spinel Nanocubes on N-Doped Graphene: A Synergistic Hybrid Electrocatalyst for the Highly Selective Reduction of Carbon Dioxide to Formic Acid. ACS Catalysis, 2017, 7, 7695-7703.	11.2	73
22	In operando XAS investigation of reduction and oxidation processes in cobalt and iron mixed spinels during the chemical loop reforming of ethanol. Journal of Materials Chemistry A, 2017, 5, 20808-20817.	10.3	24
23	Ag-Vanadates/GO Nanocomposites by Aerosol-Assisted Spray Pyrolysis: Preparation and Structural and Electrochemical Characterization of a Versatile Material. ACS Omega, 2017, 2, 2792-2802.	3.5	11
24	VO ₂ /V ₂ O ₅ :Ag Nanostructures on a DVD as Photoelectrochemical Sensors. ChemPlusChem, 2016, 81, 391-398.	2.8	11
25	A highly efficient and stable oxygen reduction reaction on Pt/CeOx/C electrocatalyst obtained via a sacrificial precursor based on a metal-organic framework. Applied Catalysis B: Environmental, 2016, 189, 39-50.	20.2	57
26	Oxygen reduction reaction at La _x Ca _{1â^x} MnO ₃ nanostructures: interplay between A-site segregation and B-site valency. Catalysis Science and Technology, 2016, 6, 7231-7238.	4.1	70
27	Oxygen Reduction at Carbonâ€Supported Lanthanides: Theâ€Role of the Bâ€Site. ChemElectroChem, 2016, 3, 283-291.	3.4	63
28	Cu2O/TiO2 heterostructures on a DVD as easy&cheap photoelectrochemical sensors. Thin Solid Films, 2016, 603, 193-201.	1.8	13
29	Electrochemical Behavior of TiO _{<i>x</i>} C _{<i>y</i>} as Catalyst Support for Direct Ethanol Fuel Cells at Intermediate Temperature: From Planar Systems to Powders. ACS Applied Materials & Interfaces, 2016, 8, 716-725.	8.0	30
30	Fast One-Pot Synthesis of MoS ₂ /Crumpled Graphene p–n Nanonjunctions for Enhanced Photoelectrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2015, 7, 25685-25692.	8.0	63
31	Carbothermal Transformation of TiO ₂ into TiO _{<i>x</i>} C _{<i>y</i>} in UHV: Tracking Intrinsic Chemical Stabilities. Journal of Physical Chemistry C, 2014, 118, 22601-22610.	3.1	29