
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/203860/publications.pdf Version: 2024-02-01



**ΒΙΝ ΥΔΝ** 

| #  | Article                                                                                                                                                                                                                        | IF                 | CITATIONS     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 1  | Novel Musselâ€Inspired Injectable Selfâ€Healing Hydrogel with Antiâ€Biofouling Property. Advanced<br>Materials, 2015, 27, 1294-1299.                                                                                           | 11.1               | 473           |
| 2  | Near-Infrared Light-Triggered Dissociation of Block Copolymer Micelles Using Upconverting Nanoparticles. Journal of the American Chemical Society, 2011, 133, 19714-19717.                                                     | 6.6                | 428           |
| 3  | Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with<br>Upconversion Nanoparticles. Journal of the American Chemical Society, 2012, 134, 16558-16561.                                         | 6.6                | 388           |
| 4  | Highly Regenerable Mussel-Inspired Fe <sub>3</sub> O <sub>4</sub> @Polydopamine-Ag Core–Shell<br>Microspheres as Catalyst and Adsorbent for Methylene Blue Removal. ACS Applied Materials &<br>Interfaces, 2014, 6, 8845-8852. | 4.0                | 385           |
| 5  | Regenerable urchin-like Fe 3 O 4 @PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes. Journal of Hazardous Materials, 2018, 350, 66-75.                                                 | 6.5                | 172           |
| 6  | High-Strength, Self-Healable, Temperature-Sensitive, MXene-Containing Composite Hydrogel as a Smart<br>Compression Sensor. ACS Applied Materials & Interfaces, 2019, 11, 47350-47357.                                          | 4.0                | 168           |
| 7  | Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun<br>BaTiO <sub>3</sub> /Poly(vinylidene fluoride) Nanocomposite Membrane. ACS Applied Materials &<br>Interfaces, 2020, 12, 33989-33998.                     | 4.0                | 150           |
| 8  | Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties. ACS Applied Materials<br>& Interfaces, 2017, 9, 9221-9225.                                                                                     | 4.0                | 145           |
| 9  | Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for<br>highly sensitive soft electronic sensors. Journal of Materials Chemistry A, 2020, 8, 24718-24733.                         | 5.2                | 128           |
| 10 | Injectable and Self-Healing Nanocomposite Hydrogels with Ultrasensitive pH-Responsiveness and<br>Tunable Mechanical Properties: Implications for Controlled Drug Delivery. Biomacromolecules, 2020,<br>21, 2409-2420.          | 2.6                | 107           |
| 11 | Duplicating Dynamic Strain-Stiffening Behavior and Nanomechanics of Biological Tissues in a Synthetic Self-Healing Flexible Network Hydrogel. ACS Nano, 2017, 11, 11074-11081.                                                 | 7.3                | 105           |
| 12 | Manipulation of block copolymer vesicles using CO2: dissociation or "breathing― Soft Matter, 2013, 9,<br>2011.                                                                                                                 | 1.2                | 104           |
| 13 | Longâ€Range Hydrophilic Attraction between Water and Polyelectrolyte Surfaces in Oil. Angewandte<br>Chemie - International Edition, 2016, 55, 15017-15021.                                                                     | 7.2                | 103           |
| 14 | High Performance Piezoelectric Nanogenerators Based on Electrospun ZnO Nanorods/Poly(vinylidene) Tj ETQqO                                                                                                                      | 0 0 rgBT /0<br>1.9 | Ovgrlock 10 T |
| 15 | Transparent Stretchable Dual-Network Ionogel with Temperature Tolerance for High-Performance<br>Flexible Strain Sensors. ACS Applied Materials & Interfaces, 2020, 12, 37597-37606.                                            | 4.0                | 92            |
| 16 | Mussel-inspired antifouling coatings bearing polymer loops. Chemical Communications, 2015, 51, 15780-15783.                                                                                                                    | 2.2                | 91            |

| 17 | Dendrimer functionalized graphene oxide for selenium removal. Carbon, 2016, 105, 655-664.                                           | 5.4 | 90 |
|----|-------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 18 | Bio-inspired membrane with adaptable wettability for smart oil/water separation. Journal of Membrane<br>Science, 2020, 598, 117661. | 4.1 | 83 |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Environmentally friendly nanocomposites based on cellulose nanocrystals and polydopamine for rapid removal of organic dyes in aqueous solution. Cellulose, 2020, 27, 2085-2097.                                                               | 2.4 | 78        |
| 20 | Poly(acrylic acid) functionalized magnetic graphene oxide nanocomposite for removal of methylene<br>blue. RSC Advances, 2015, 5, 32272-32282.                                                                                                 | 1.7 | 75        |
| 21 | Both Core- and Shell-Cross-Linked Nanogels: Photoinduced Size Change, Intraparticle LCST, and Interparticle UCST Thermal Behaviors. Langmuir, 2011, 27, 436-444.                                                                              | 1.6 | 72        |
| 22 | Tannic acid/Fe3+ functionalized magnetic graphene oxide nanocomposite with high loading of silver<br>nanoparticles as ultra-efficient catalyst and disinfectant for wastewater treatment. Chemical<br>Engineering Journal, 2021, 405, 126629. | 6.6 | 72        |
| 23 | Ultrasound-Responsive Block Copolymer Micelles Based on a New Amplification Mechanism. Langmuir, 2012, 28, 16463-16468.                                                                                                                       | 1.6 | 71        |
| 24 | Development of eco-friendly CO2-responsive cellulose nanofibril aerogels as "green―adsorbents for<br>anionic dyes removal. Journal of Hazardous Materials, 2021, 405, 124194.                                                                 | 6.5 | 70        |
| 25 | Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor.<br>Journal of Materials Science, 2020, 55, 1280-1291.                                                                                           | 1.7 | 69        |
| 26 | Nanomechanics of Anionâ^'Ï€ Interaction in Aqueous Solution. Journal of the American Chemical<br>Society, 2020, 142, 1710-1714.                                                                                                               | 6.6 | 67        |
| 27 | A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants. Science of the Total Environment, 2016, 565, 369-375.                                                                           | 3.9 | 66        |
| 28 | A wet adhesion strategy <i>via</i> synergistic cation–΀ and hydrogen bonding interactions of<br>antifouling zwitterions and mussel-inspired binding moieties. Journal of Materials Chemistry A, 2019,<br>7, 21944-21952.                      | 5.2 | 66        |
| 29 | Sustainable Advanced Fenton-like Catalysts Based on Mussel-Inspired Magnetic Cellulose<br>Nanocomposites to Effectively Remove Organic Dyes and Antibiotics. ACS Applied Materials &<br>Interfaces, 2020, 12, 51952-51959.                    | 4.0 | 64        |
| 30 | Molecular and Surface Interactions between Polymer Flocculant Chitosan- <i>g</i> -polyacrylamide<br>and Kaolinite Particles: Impact of Salinity. Journal of Physical Chemistry C, 2015, 119, 7327-7339.                                       | 1.5 | 61        |
| 31 | Efficient removal of elemental mercury (Hg <sup>0</sup> ) by SBA-15-Ag adsorbents. Journal of<br>Materials Chemistry A, 2014, 2, 17730-17734.                                                                                                 | 5.2 | 59        |
| 32 | Hierarchical polydopamine coated cellulose nanocrystal microstructures as efficient nanoadsorbents for removal of Cr(VI) ions. Cellulose, 2019, 26, 6401-6414.                                                                                | 2.4 | 59        |
| 33 | An amphiphobic graphene-based hydrogel as oil-water separator and oil fence material. Chemical<br>Engineering Journal, 2018, 353, 708-716.                                                                                                    | 6.6 | 55        |
| 34 | Light-responsive block copolymer vesicles based on a photo-softening effect. Soft Matter, 2011, 7, 10001.                                                                                                                                     | 1.2 | 53        |
| 35 | Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties.<br>Journal of Materials Chemistry C, 2018, 6, 5707-5715.                                                                                      | 2.7 | 51        |
| 36 | A Universal Strategy for Constructing Robust and Antifouling Cellulose Nanocrystal Coating.<br>Advanced Functional Materials, 2022, 32, 2109989.                                                                                              | 7.8 | 51        |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Biomimetic Lubrication and Surface Interactions of Dopamine-Assisted Zwitterionic Polyelectrolyte<br>Coatings. Langmuir, 2018, 34, 11593-11601.                                                             | 1.6 | 50        |
| 38 | The effect of molecular weight of polymer matrix on properties of polymer-dispersed liquid crystals.<br>European Polymer Journal, 2007, 43, 2745-2749.                                                      | 2.6 | 48        |
| 39 | Unraveling the molecular interaction mechanism between graphene oxide and aromatic organic compounds with implications on wastewater treatment. Chemical Engineering Journal, 2019, 358, 842-849.           | 6.6 | 48        |
| 40 | Stomatocyte-like hollow polydopamine nanoparticles for rapid removal of water-soluble dyes from water. Chemical Communications, 2019, 55, 8162-8165.                                                        | 2.2 | 45        |
| 41 | Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection.<br>Journal of Colloid and Interface Science, 2020, 560, 177-185.                                              | 5.0 | 45        |
| 42 | Polydopamine/polystyrene nanocomposite double-layer strain sensor hydrogel with mechanical,<br>self-healing, adhesive and conductive properties. Materials Science and Engineering C, 2020, 109,<br>110567. | 3.8 | 45        |
| 43 | Robust, stretchable and photothermal self-healing polyurethane elastomer based on furan-modified polydopamine nanoparticles. Polymer, 2020, 190, 122219.                                                    | 1.8 | 45        |
| 44 | Universal Mussel-Inspired Ultrastable Surface-Anchoring Strategy via Adaptive Synergy of Catechol and Cations. ACS Applied Materials & amp; Interfaces, 2018, 10, 2166-2173.                                | 4.0 | 43        |
| 45 | Nanocomposites of graphene oxide, Ag nanoparticles, and magnetic ferrite nanoparticles for elemental mercury (Hg <sup>0</sup> ) removal. RSC Advances, 2015, 5, 15634-15640.                                | 1.7 | 39        |
| 46 | A coral-like polyaniline/barium titanate nanocomposite electrode with double electric polarization<br>for electrochromic energy storage applications. Journal of Materials Chemistry A, 2021, 9, 1669-1677. | 5.2 | 38        |
| 47 | Nanomechanics of π-cation-π interaction with implications for bio-inspired wet adhesion. Acta<br>Biomaterialia, 2020, 117, 294-301.                                                                         | 4.1 | 37        |
| 48 | RAFT Copolymerization as a means to enhance the electroâ€optical performance of polymer dispersed<br>liquid crystal films. Journal of Polymer Science Part A, 2007, 45, 4144-4149.                          | 2.5 | 35        |
| 49 | Core cross-linked double hydrophilic block copolymer micelles based on multiple hydrogen-bonding interactions. Polymer Chemistry, 2017, 8, 3066-3073.                                                       | 1.9 | 33        |
| 50 | Patterned Flexible Electrochromic Device Based on Monodisperse Silica/Polyaniline Core/Shell<br>Nanospheres. Journal of the Electrochemical Society, 2019, 166, H343-H350.                                  | 1.3 | 32        |
| 51 | Modification of electro-optical properties of polymer dispersed liquid crystal films by iniferter polymerization. European Polymer Journal, 2008, 44, 952-958.                                              | 2.6 | 31        |
| 52 | Nanoconfining Cation-ï€ Interactions as a Modular Strategy to Construct Injectable Self-Healing<br>Hydrogel. CCS Chemistry, 2022, 4, 2724-2737.                                                             | 4.6 | 31        |
| 53 | Aminated Polyacrylonitrile Nanofiber Membranes for the Removal of Organic Dyes. ACS Applied Nano<br>Materials, 2022, 5, 1131-1140.                                                                          | 2.4 | 30        |
| 54 | Microfluidic Synthesis of Photoresponsive Spool-Like Block Copolymer Nanoparticles: Flow-Directed<br>Formation and Light-Triggered Dissociation. Chemistry of Materials, 2015, 27, 8094-8104.               | 3.2 | 29        |

Βιν Υάν

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Ultra-efficient and stable heterogeneous iron-based Fenton nanocatalysts for degrading organic dyes<br>at neutral pH <i>via</i> a chelating effect under nanoconfinement. Chemical Communications, 2020,<br>56, 6571-6574.                           | 2.2 | 29        |
| 56 | Fe3+-citric acid/sodium alginate hydrogel: A photo-responsive platform for rapid water purification.<br>Carbohydrate Polymers, 2021, 269, 118269.                                                                                                    | 5.1 | 28        |
| 57 | Polyaniline nanoparticle coated graphene oxide composite nanoflakes for bifunctional multicolor<br>electrochromic and supercapacitor applications. Journal of Materials Science: Materials in<br>Electronics, 2019, 30, 13497-13508.                 | 1.1 | 27        |
| 58 | Octadecyltrichlorosilane Deposition on Mica Surfaces: Insights into the Interface Interaction<br>Mechanism. Journal of Physical Chemistry B, 2017, 121, 3151-3161.                                                                                   | 1.2 | 25        |
| 59 | Electrochromic polyaniline/aramid nanofiber composites with enhanced cycling stability and film forming property. Journal of Materials Science: Materials in Electronics, 2019, 30, 12718-12728.                                                     | 1.1 | 24        |
| 60 | Highly efficient removal of Cr( <scp>vi</scp> ) ions from wastewater by the pomegranate-like magnetic<br>hybrid nano-adsorbent of polydopamine and Fe <sub>3</sub> O <sub>4</sub> nanoparticles. New<br>Journal of Chemistry, 2020, 44, 12785-12792. | 1.4 | 24        |
| 61 | PEDOT nanoparticles fully covered on natural tubular clay for hierarchically porous electrochromic film. Solar Energy Materials and Solar Cells, 2019, 199, 59-65.                                                                                   | 3.0 | 23        |
| 62 | Understanding nanorheology and surface forces of confined thin films. Korea Australia Rheology<br>Journal, 2014, 26, 3-14.                                                                                                                           | 0.7 | 22        |
| 63 | Optically Triggered Dissociation of Kinetically Stabilized Block Copolymer Vesicles in Aqueous<br>Solution. Macromolecular Rapid Communications, 2011, 32, 972-976.                                                                                  | 2.0 | 21        |
| 64 | Regulation of aggregation-induced emission behaviours and mechanofluorochromism of<br>tetraphenylethene through different oxidation states of sulphur moieties. Journal of Materials<br>Chemistry C, 2019, 7, 8244-8249.                             | 2.7 | 21        |
| 65 | Constructing spraying-processed complementary smart windows <i>via</i> electrochromic materials with hierarchical nanostructures. Journal of Materials Chemistry C, 2019, 7, 14855-14860.                                                            | 2.7 | 21        |
| 66 | Facile preparation of hierarchical porous polydopamine microspheres for rapid removal of chromate from the wastewater. Journal of Leather Science and Engineering, 2020, 2, .                                                                        | 2.7 | 20        |
| 67 | Tuning protein adsorption on charged polyelectrolyte brushes via salinity adjustment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 37-45.                                                                            | 2.3 | 19        |
| 68 | Acidity-triggered zwitterionic prodrug nano-carriers with AIE properties and amplification of oxidative stress for mitochondria-targeted cancer theranostics. Polymer Chemistry, 2019, 10, 983-990.                                                  | 1.9 | 19        |
| 69 | Mechanistic Understanding and Nanomechanics of Multiple Hydrogen-Bonding Interactions in Aqueous Environment. Journal of Physical Chemistry C, 2019, 123, 4540-4548.                                                                                 | 1.5 | 19        |
| 70 | High-performance piezoelectric nanogenerator based on electrospun ZnO nanorods/P(VDF-TrFE)<br>composite membranes for energy harvesting application. Journal of Materials Science: Materials in<br>Electronics, 2021, 32, 3966-3978.                 | 1.1 | 19        |
| 71 | Starch-derived flocculant with hyperbranched brush architecture for effectively flocculating<br>organic dyes, heavy metals and antibiotics. Journal of the Taiwan Institute of Chemical Engineers,<br>2022, 135, 104383.                             | 2.7 | 19        |
| 72 | Robust polymer nanofilms with bioengineering and environmental applications <i>via</i> facile and<br>highly efficient covalent layer-by-layer assembly. Journal of Materials Chemistry B, 2018, 6, 3742-3750.                                        | 2.9 | 18        |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Conductive Polymer Nanotubes for Electrochromic Applications. ACS Applied Nano Materials, 2019, 2, 3154-3160.                                                                                                                                                  | 2.4 | 18        |
| 74 | A novel polymer dispersed liquid crystal film prepared by reversible addition fragmentation chain transfer polymerization. European Polymer Journal, 2007, 43, 4037-4042.                                                                                      | 2.6 | 17        |
| 75 | Effect of the structure of gelators on electro-optical properties of liquid crystal physical gels.<br>Journal of Colloid and Interface Science, 2007, 316, 825-830.                                                                                            | 5.0 | 17        |
| 76 | Rapid Dewatering and Consolidation of Concentrated Colloidal Suspensions: Mature Fine Tailings via<br>Self-Healing Composite Hydrogel. ACS Applied Materials & Interfaces, 2019, 11, 21610-21618.                                                              | 4.0 | 17        |
| 77 | Solution-processable three-dimensional honeycomb-like poly(3,4-ethylenedioxythiophene)<br>nanostructure networks with very fast response speed for patterned electrochromic devices. Solar<br>Energy Materials and Solar Cells, 2020, 207, 110354.             | 3.0 | 16        |
| 78 | Self-Assembled Polyaniline/Ti3C2Tx Nanocomposites for High-Performance Electrochromic Films.<br>Nanomaterials, 2021, 11, 2956.                                                                                                                                 | 1.9 | 16        |
| 79 | Boosting heterogeneous Fenton reactions for degrading organic dyes <i>via</i> the photothermal effect under neutral conditions. Environmental Science: Nano, 2022, 9, 532-541.                                                                                 | 2.2 | 16        |
| 80 | Solution-Processable and Patternable Poly( <i>o</i> -methoxyaniline)-Based Nanocomposite Film for<br>Large-Area Electrochromic Display with Large Optical Modulation and Ultrafast Response Speed.<br>Journal of Physical Chemistry C, 2020, 124, 10898-10906. | 1.5 | 14        |
| 81 | The Effects of Different Side Groups on the Properties of Polythiophene. Journal of Macromolecular<br>Science - Pure and Applied Chemistry, 2007, 44, 989-993.                                                                                                 | 1.2 | 13        |
| 82 | Influence of matrix glass transition temperature on the memory effect of polymerâ€dispersed liquid<br>crystals. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 729-732.                                                                        | 2.4 | 13        |
| 83 | Interaction Mechanisms of Zwitterions with Opposite Dipoles in Aqueous Solutions. Langmuir, 2019, 35, 2842-2853.                                                                                                                                               | 1.6 | 13        |
| 84 | Probing the Interaction Forces of Phenol/Amine Deposition in Wet Adhesion: Impact of Phenol/Amine<br>Mass Ratio and Surface Properties. Langmuir, 2019, 35, 15639-15650.                                                                                       | 1.6 | 12        |
| 85 | A facile preparation of SiO2/PEDOT core/shell nanoparticle composite film for electrochromic device.<br>Journal of Materials Science: Materials in Electronics, 2019, 30, 3994-4005.                                                                           | 1.1 | 12        |
| 86 | A facile and eco-friendly strategy to prepare synthetic syntans for after-treatment of dyed nylon<br>fabrics. Dyes and Pigments, 2017, 146, 199-202.                                                                                                           | 2.0 | 11        |
| 87 | Fine adjustment of network in polymer network liquid crystal film employing RAFT polymerization.<br>Journal of Polymer Science Part A, 2008, 46, 3140-3144.                                                                                                    | 2.5 | 10        |
| 88 | Control of liquid crystal droplet configuration in polymer dispersed liquid crystal with macro-iniferter polystyrene. Liquid Crystals, 2009, 36, 933-938.                                                                                                      | 0.9 | 9         |
| 89 | Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films.<br>Frontiers of Chemical Engineering in China, 2008, 2, 265-268.                                                                                        | 0.6 | 8         |
| 90 | The effect of the resultant microphase-separated structures of polymer matrices on the electro-optical properties of polymer dispersed liquid crystal films by Iniferter polymerization. European Polymer Journal, 2009, 45, 1936-1940.                        | 2.6 | 8         |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The improvement of electroâ€optical properties of polymerâ€dispersed liquid crystals using copolymer<br>macroinitiator with different glass transition temperature. Journal of Polymer Science Part A, 2010,<br>48, 5557-5561.                | 2.5 | 8         |
| 92  | Low-Power Near-Infrared-Responsive Upconversion Nanovectors. ACS Applied Materials &<br>Interfaces, 2021, 13, 7094-7101.                                                                                                                      | 4.0 | 8         |
| 93  | Effect of molecular weight of macroâ€iniferter on electroâ€optical properties of polymer dispersed<br>liquid crystal films prepared by iniferter polymerization. Journal of Polymer Science, Part B: Polymer<br>Physics, 2009, 47, 1530-1534. | 2.4 | 7         |
| 94  | 808Ânm Nearâ€Infrared Lightâ€Triggered Payload Release from Green Lightâ€Responsive Donor–Acceptor<br>Stenhouse Adducts Polymerâ€Coated Upconversion Nanoparticles. Macromolecular Rapid<br>Communications, 2021, 42, 2100318.                | 2.0 | 6         |
| 95  | Near-Infrared Laser "Weldable―Hydrogen-Bonded Hydrogel Sensor Based on Photothermal Gel–Sol<br>Transition. ACS Sustainable Chemistry and Engineering, 2021, 9, 16241-16250.                                                                   | 3.2 | 6         |
| 96  | Sustainably closed loop recycling of hierarchically porous polymer microbeads for efficient removal of cationic dyes. Environmental Science: Water Research and Technology, 2022, 8, 575-585.                                                 | 1.2 | 6         |
| 97  | Novel Ti-Coordination Polydopamine Nanocomposite with a Combination of Adsorption, Reduction, and Ion Exchange for Rapid Cr(VI) Removal. Industrial & Engineering Chemistry Research, 2022, 61, 9717-9724.                                    | 1.8 | 6         |
| 98  | Synthesis and characterization of copolythiophene. Journal of Applied Polymer Science, 2007, 105, 3543-3550.                                                                                                                                  | 1.3 | 5         |
| 99  | Macro reversible addition–fragmentation chain transfer agent mixture as a means to enhance the<br>electroâ€optical performance of polymerâ€dispersed liquid crystals. Polymer International, 2011, 60,<br>971-975.                            | 1.6 | 5         |
| 100 | Ion-specific effect on self-cleaning performances of polyelectrolyte-functionalized membranes and the underlying nanomechanical mechanism. Journal of Membrane Science, 2021, 634, 119408.                                                    | 4.1 | 5         |
| 101 | Probing Anionâ^ï€ Interactions between Fluoroarene and Carboxylate Anion in Aqueous Solutions.<br>Journal of Colloid and Interface Science, 2022, 615, 778-785.                                                                               | 5.0 | 5         |
| 102 | Longâ€Range Hydrophilic Attraction between Water and Polyelectrolyte Surfaces in Oil. Angewandte<br>Chemie, 2016, 128, 15241-15245.                                                                                                           | 1.6 | 4         |
| 103 | Solution-processable core/shell structured nanocellulose/poly(o-Methoxyaniline) nanocomposites for electrochromic applications. Cellulose, 2020, 27, 9467-9478.                                                                               | 2.4 | 4         |
| 104 | Understanding the surface properties and rheology of a silica suspension mediated by a comb-type poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) copolymer: effect of salinity. Soft Matter, 2018, 14, 4810-4819.                           | 1.2 | 3         |
| 105 | Sustainable Indicators Based on Furfural-Derived Colorant-Doped Biobased Polyurethane to Improve<br>Food Safety. ACS Sustainable Chemistry and Engineering, 2022, 10, 8624-8630.                                                              | 3.2 | 3         |
| 106 | Synthesis and Properties of High-Performance Thermoplastic Poly(ester-ether) Elastomers Reinforced<br>by N,Nâ€2-Bis(2-carboxyethyl) Pyromellitimide Moieties. Polymer Science - Series B, 2018, 60, 578-588.                                  | 0.3 | 1         |