
## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2038183/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 655-667.                                                                            | 12.9 | 122       |
| 2  | Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate. Journal of<br>Materials Chemistry A, 2015, 3, 9807-9816.                                                           | 10.3 | 110       |
| 3  | Raw-Cotton-Derived N-Doped Carbon Fiber Aerogel as an Efficient Electrode for Electrochemical Capacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 4008-4015.                                    | 6.7  | 108       |
| 4  | Thin-walled, mesoporous and nitrogen-doped hollow carbon spheres using ionic liquids as precursors. Journal of Materials Chemistry A, 2013, 1, 1045-1047.                                                   | 10.3 | 100       |
| 5  | Order Mesoporous Carbon Spheres with Precise Tunable Large Pore Size by Encapsulated Selfâ€Activation Strategy. Advanced Functional Materials, 2018, 28, 1802332.                                           | 14.9 | 91        |
| 6  | Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting.<br>ChemSusChem, 2021, 14, 5359-5383.                                                                          | 6.8  | 70        |
| 7  | Manipulating the Zinc Deposition Behavior in Hexagonal Patterns at the Preferential Zn (100) Crystal<br>Plane to Construct Surficial Dendriteâ€Free Zinc Metal Anode. Small, 2022, 18, e2105978.            | 10.0 | 61        |
| 8  | Fabrication of Nitrogen-Doped Hollow Mesoporous Spherical Carbon Capsules for Supercapacitors.<br>Langmuir, 2016, 32, 8934-8941.                                                                            | 3.5  | 57        |
| 9  | Nitrogen-doped dual mesoporous carbon for the selective oxidation of ethylbenzene. Nanoscale, 2015,<br>7, 14684-14690.                                                                                      | 5.6  | 56        |
| 10 | Confined pyrolysis for direct conversion of solid resin spheres into yolk–shell carbon spheres for<br>supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1038-1044.                                 | 10.3 | 56        |
| 11 | Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of<br>Materials Chemistry A, 2020, 8, 4283-4289.                                                             | 10.3 | 51        |
| 12 | N-Doped Hollow Carbon Spheres/Sheets Composite for Electrochemical Capacitor. ACS Applied<br>Materials & Interfaces, 2018, 10, 40062-40069.                                                                 | 8.0  | 48        |
| 13 | Porous carbon derived from waste polystyrene foam for supercapacitor. Journal of Materials<br>Science, 2018, 53, 12115-12122.                                                                               | 3.7  | 44        |
| 14 | A Review on Applications of Layered Phosphorus in Energy Storage. Transactions of Tianjin University,<br>2020, 26, 104-126.                                                                                 | 6.4  | 43        |
| 15 | Selective Hydrogenation of Phenol and Derivatives over Polymerâ€Functionalized<br>Carbonâ€Nanofiberâ€6upported Palladium Using Sodium Formate as the Hydrogen Source. ChemPlusChem,<br>2013, 78, 1370-1378. | 2.8  | 42        |
| 16 | N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhancing supercapacitor performance. Journal of Colloid and Interface Science, 2021, 587, 780-788.                              | 9.4  | 42        |
| 17 | Tuning Confined Nanospace for Preparation of Nâ€doped Hollow Carbon Spheres for High Performance<br>Supercapacitors. ChemSusChem, 2019, 12, 303-309.                                                        | 6.8  | 39        |
| 18 | Yeasts-derived nitrogen-doped porous carbon microcapsule prepared by silica-confined activation for supercapacitor. Journal of Colloid and Interface Science, 2021, 601, 467-473.                           | 9.4  | 36        |

| #  | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Synthesis of macro-mesoporous carbon materials and hollow core/mesoporous shell carbon spheres as supercapacitors. Journal of Materials Science, 2016, 51, 4601-4608.                                       | 3.7  | 34        |
| 20 | Selective hydrogenation of phenol and derivatives over an ionic liquid-like copolymer stabilized palladium catalyst in aqueous media. RSC Advances, 2013, 3, 4171.                                          | 3.6  | 33        |
| 21 | A confined space pyrolysis strategy for controlling the structure of hollow mesoporous carbon spheres with high supercapacitor performance. Nanoscale, 2019, 11, 4453-4462.                                 | 5.6  | 33        |
| 22 | Synthesis of graphitic carbon spheres for enhanced supercapacitor performance. Journal of Materials<br>Science, 2015, 50, 5578-5582.                                                                        | 3.7  | 32        |
| 23 | Carbon Nanotube@Nâ€Doped Mesoporous Carbon Composite Material for Supercapacitor Electrodes.<br>Chemistry - an Asian Journal, 2019, 14, 634-639.                                                            | 3.3  | 31        |
| 24 | Co-assembly strategy for uniform and tunable hollow carbon spheres with supercapacitor application. Journal of Colloid and Interface Science, 2020, 565, 245-253.                                           | 9.4  | 30        |
| 25 | Synthesis of mesoporous carbon with tunable pore size for supercapacitors. New Journal of<br>Chemistry, 2020, 44, 1036-1044.                                                                                | 2.8  | 29        |
| 26 | N-Doped yolk–shell carbon nanotube composite for enhanced electrochemical performance in a<br>supercapacitor. Nanoscale, 2019, 11, 22796-22803.                                                             | 5.6  | 28        |
| 27 | Confined-Space Pyrolysis of Polystyrene/Polyacrylonitrile for Nitrogen-Doped Hollow Mesoporous<br>Carbon Spheres with High Supercapacitor Performance. ACS Applied Energy Materials, 2019, 2,<br>4402-4410. | 5.1  | 27        |
| 28 | Reasonable Construction of Hollow Carbon Spheres with an Adjustable Shell Surface for Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 11750-11757.                                           | 8.0  | 27        |
| 29 | Mesoporous carbon sheets embedded with vesicles for enhanced supercapacitor performance.<br>Journal of Materials Chemistry A, 2019, 7, 15707-15713.                                                         | 10.3 | 26        |
| 30 | Template-free method for fabricating carbon nanotube combined with thin N-doped porous carbon composite for supercapacitor. Journal of Materials Science, 2019, 54, 6451-6460.                              | 3.7  | 25        |
| 31 | Core–Shell Structure of a Polypyrrole-Coated Phosphorus/Carbon Nanotube Anode for<br>High-Performance Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 4112-4118.                              | 5.1  | 25        |
| 32 | Mesoporous carbonaceous materials prepared from used cigarette filters for efficient phenol adsorption and CO <sub>2</sub> capture. RSC Advances, 2015, 5, 107299-107306.                                   | 3.6  | 24        |
| 33 | N-Doped Mesoporous Carbon Sheets/Hollow Carbon Spheres Composite for Supercapacitors.<br>Langmuir, 2018, 34, 15665-15673.                                                                                   | 3.5  | 24        |
| 34 | Synthesis of Nitrogenâ€Doped Porous Carbon Monolith for Binderâ€Free Allâ€Carbon Supercapacitors.<br>ChemElectroChem, 2019, 6, 535-542.                                                                     | 3.4  | 24        |
| 35 | Nitrogen-doped hollow carbon spheres for supercapacitors. Journal of Materials Science, 2017, 52, 3153-3161.                                                                                                | 3.7  | 23        |
| 36 | Solid–solid grinding/templating route to magnetically separable nitrogen-doped mesoporous carbon<br>for the removal of Cu2+ ions. Iournal of Hazardous Materials. 2014. 279. 280-288.                       | 12.4 | 22        |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Synthesis of mesoporous carbon nanospheres for highly efficient adsorption of bulky dye molecules.<br>Journal of Materials Science, 2016, 51, 7016-7028.                                                         | 3.7  | 21        |
| 38 | Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 2791-2797.                             | 5.9  | 21        |
| 39 | Titanate nanotube-promoted chemical fixation of carbon dioxide to cyclic carbonate: a combined experimental and computational study. Catalysis Science and Technology, 2016, 6, 780-790.                         | 4.1  | 20        |
| 40 | A novel method for fabricating hybrid biobased nanocomposites film with stable fluorescence<br>containing CdTe quantum dots and montmorillonite-chitosan nanosheets. Carbohydrate Polymers,<br>2016, 145, 13-19. | 10.2 | 19        |
| 41 | Graphene quantum dots derived from carbon fibers for oxidation of dopamine. Journal Wuhan<br>University of Technology, Materials Science Edition, 2016, 31, 1294-1297.                                           | 1.0  | 18        |
| 42 | Preparation and Characterization of Vanillin Cross-Linked Chitosan Microspheres of Pterostilbene.<br>International Journal of Polymer Analysis and Characterization, 2014, 19, 83-93.                            | 1.9  | 17        |
| 43 | DFT Studies of the Selective C–O Hydrogenolysis and Ring-Opening of Biomass-Derived<br>Tetrahydrofurfuryl Alcohol over Rh(111) surfaces. Journal of Physical Chemistry C, 2016, 120,<br>19124-19134.             | 3.1  | 17        |
| 44 | Synthesis and characterization of nitrogen-doped graphene hollow spheres as electrode material for supercapacitors. Journal of Nanoparticle Research, 2017, 19, 1.                                               | 1.9  | 17        |
| 45 | Synthesis of nitrogen-doped mesoporous carbon for high-performance supercapacitors. New Journal of Chemistry, 2019, 43, 2776-2782.                                                                               | 2.8  | 17        |
| 46 | Porous Carbon Nanosheets Prepared from Plastic Wastes for Supercapacitors. Journal of Electronic<br>Materials, 2018, 47, 5816-5824.                                                                              | 2.2  | 16        |
| 47 | Nitrogen-doping hierarchically porous carbon nanosheets for supercapacitor. Journal of Materials<br>Science: Materials in Electronics, 2018, 29, 5363-5372.                                                      | 2.2  | 15        |
| 48 | A comprehensive modification enables the high rate capability of P2-Na0.75Mn0.67Ni0.33O2 for sodium-ion cathode materials. Journal of Energy Chemistry, 2022, 69, 442-449.                                       | 12.9 | 15        |
| 49 | A co-confined carbonization approach to aligned nitrogen-doped mesoporous carbon nanofibers and its application as an adsorbent. Journal of Hazardous Materials, 2014, 276, 192-199.                             | 12.4 | 14        |
| 50 | Fe modified mesoporous hollow carbon spheres for selective oxidation of ethylbenzene. Science China Materials, 2017, 60, 1227-1233.                                                                              | 6.3  | 14        |
| 51 | Synthesis of n-doped mesoporous carbon by silica assistance as electrode for supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 3214-3221.                                        | 2.2  | 14        |
| 52 | Controlling the Inner Structure of Carbon Spheres via "Protective-Dissolution―Strategy for<br>Supercapacitor. Journal of Physical Chemistry C, 2019, 123, 2801-2807.                                             | 3.1  | 14        |
| 53 | K <sub>2</sub> Ti <sub>6</sub> O <sub>13</sub> /carbon core–shell nanorods as a superior anode<br>material for high-rate potassium-ion batteries. Nanoscale, 2020, 12, 11427-11434.                              | 5.6  | 14        |
| 54 | Ni nanoparticles confined by yolk-shell structure of CNT-mesoporous carbon for electrocatalytic conversion of CO2: Switching CO to formate. Journal of Energy Chemistry, 2022, 70, 224-229.                      | 12.9 | 14        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Biocompatible liquid metal coated stretchable electrospinning film for strain sensors monitoring system. Science China Materials, 2022, 65, 2235-2243.                                 | 6.3 | 14        |
| 56 | Controllable synthesis of nitrogen-doped hollow carbon nanospheres with dopamine as precursor for CO <sub>2</sub> capture. RSC Advances, 2016, 6, 91557-91561.                         | 3.6 | 13        |
| 57 | Synthesis of mesoporous carbon nanospheres via "pyrolysis-deposition―strategy for CO2 capture.<br>Journal of Materials Science, 2017, 52, 9640-9647.                                   | 3.7 | 13        |
| 58 | Hierarchical porous nitrogen-doped partial graphitized carbon monoliths for supercapacitor. Journal of Nanoparticle Research, 2017, 19, 1.                                             | 1.9 | 13        |
| 59 | Monomer Selfâ€Deposition for Ordered Mesoporous Carbon for Highâ€Performance Supercapacitors.<br>ChemSusChem, 2019, 12, 2409-2414.                                                     | 6.8 | 13        |
| 60 | Potassiumâ€Activated Wire Mesh: A Stable Monolithic Catalyst for Diesel Soot Combustion. Chemical<br>Engineering and Technology, 2017, 40, 50-55.                                      | 1.5 | 12        |
| 61 | Conversion of waste plastic into ordered mesoporous carbon for electrochemical applications.<br>Journal of Materials Research, 2019, 34, 941-949.                                      | 2.6 | 12        |
| 62 | Electrochemiluminescence of metal-organic complex nanowires based on graphene-Nafion modified electrode for biosensing application. Science China Chemistry, 2017, 60, 642-648.        | 8.2 | 11        |
| 63 | Cauliflower-derived porous carbon without activation for electrochemical capacitor and CO2 capture applications. Journal of Nanoparticle Research, 2018, 20, 1.                        | 1.9 | 11        |
| 64 | N-doped ordered mesoporous carbon prepared by solid–solid grinding for supercapacitors. Journal<br>of Materials Research, 2018, 33, 3408-3417.                                         | 2.6 | 11        |
| 65 | Highly recyclable and magnetic catalyst of a metalloporphyrin-based polymeric composite for cycloaddition of CO <sub>2</sub> to epoxide. RSC Advances, 2016, 6, 96455-96466.           | 3.6 | 10        |
| 66 | Preparation of mesoporous carbon from biomass for heavy metal ion adsorption. Fullerenes<br>Nanotubes and Carbon Nanostructures, 2017, 25, 102-108.                                    | 2.1 | 10        |
| 67 | Waste chrysanthemum tea derived hierarchically porous carbon for CO2 capture. Journal of<br>Renewable and Sustainable Energy, 2017, 9, 064901.                                         | 2.0 | 10        |
| 68 | Hollow mesoporous carbon cages by pyrolysis of waste polyethylene for supercapacitors. New<br>Journal of Chemistry, 2019, 43, 10899-10905.                                             | 2.8 | 10        |
| 69 | Synthesis of bimodal mesoporous carbon nanospheres for methyl orange adsorption. Journal of<br>Porous Materials, 2017, 24, 1605-1612.                                                  | 2.6 | 9         |
| 70 | Synthesis of mesoporous tubular carbon using natural tubular Halloysite as template for supercapacitor. Journal of Materials Science: Materials in Electronics, 2018, 29, 12187-12194. | 2.2 | 9         |
| 71 | Tunable N-doped hollow carbon spheres induced by an ionic liquid for energy storage applications.<br>Materials Chemistry Frontiers, 2021, 5, 843-850.                                  | 5.9 | 9         |
| 72 | Monomer self-deposition synthesis of N-doped mesoporous carbon tubes using halloysite as template for supercapacitors. Journal of Materials Science, 2021, 56, 3312-3324.              | 3.7 | 9         |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Cr3+ pre-intercalated hydrated vanadium oxide as an excellent performance cathode for aqueous zinc-ion batteries. Fundamental Research, 2021, 1, 418-424.                             | 3.3  | 9         |
| 74 | Silica-Assisted Controlled Engineering of Nitrogen-Doped Carbon Cages with Bulges for<br>High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 60327-60336. | 8.0  | 9         |
| 75 | CNT modified by mesoporous carbon anchored by Ni nanoparticles for CO <sub>2</sub><br>electrochemical reduction. , 2022, 4, 1274-1284.                                                |      | 9         |
| 76 | Sodium-Ion Battery Anode Construction with SnP <i> <sub>x</sub> </i> Crystal Domain in Amorphous<br>Phosphorus Matrix. Energy Material Advances, 2021, 2021, .                        | 11.0 | 8         |
| 77 | Mesoporous carbon materials with different morphology for pesticide adsorption. Applied<br>Nanoscience (Switzerland), 2020, 10, 151-157.                                              | 3.1  | 7         |
| 78 | Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors.<br>Frontiers of Materials Science, 2019, 13, 156-164.                                | 2.2  | 6         |
| 79 | Ionic liquid-induced tunable N-doped mesoporous carbon spheres for supercapacitors. Inorganic<br>Chemistry Frontiers, 2020, 7, 2548-2555.                                             | 6.0  | 6         |
| 80 | Fabrication of N-doped carbon nanobelts from a polypyrrole tube by confined pyrolysis for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15, 1312-1321.        | 4.4  | 6         |
| 81 | Fast and extensive intercalation chemistry in Wadsley-Roth phase based high-capacity electrodes.<br>Journal of Energy Chemistry, 2022, 69, 601-611.                                   | 12.9 | 6         |
| 82 | Characterization and optimization of graphite felt/BP2000 composite electrode for the H2/Br2 fuel cell. RSC Advances, 2016, 6, 12669-12675.                                           | 3.6  | 5         |
| 83 | Biomass derived 5-hydroxymethylfurfural as carbon precursor to form hollow carbon nanospheres<br>for CO2 capture. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 493-496.  | 2.1  | 5         |
| 84 | Silicaâ€Confined Activation for Biomassâ€Derived Porous Carbon Materials for Highâ€Performance<br>Supercapacitors. ChemElectroChem, 2021, 8, 2028-2033.                               | 3.4  | 5         |
| 85 | Extraction Behavior of Indole from Simulated Wash Oil Using Halogen-Free Ionic Liquids. ACS Omega,<br>2021, 6, 16623-16630.                                                           | 3.5  | 5         |
| 86 | Treatment of Cerebral Ischemia Through NMDA Receptors: Metabotropic Signaling and Future Directions. Frontiers in Pharmacology, 2022, 13, 831181.                                     | 3.5  | 5         |
| 87 | Luminogen-functionalized mesoporous SBA-15 for fluorescent detection of antibiotic cefalexin.<br>Journal of Materials Research, 2018, 33, 1442-1448.                                  | 2.6  | 4         |
| 88 | Synthesis of rich fluffy porous carbon spheres by dissolution–reassembly method for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 3316-3324.     | 2.2  | 4         |
| 89 | Allâ€Carbon Electrode Directly Derived from Wax Gourd for Supercapacitor. Physica Status Solidi (A)<br>Applications and Materials Science, 2019, 216, 1800798.                        | 1.8  | 4         |
| 90 | Modification of graphene photodetector by TiO2 prepared by oxygen plasma. Journal of Materials<br>Science, 2021, 56, 10938-10946.                                                     | 3.7  | 4         |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Construction of Dualâ€Mesoporous Carbon Fibers Via Coassembly for Supercapacitors. Physica Status<br>Solidi (A) Applications and Materials Science, 2020, 217, 2000365. | 1.8 | 2         |
| 92 | Porous yolk–shell-structured carbon nanospheres for electrochemical energy storage. Journal of<br>Materials Science: Materials in Electronics, 2020, 31, 13321-13329.   | 2.2 | 2         |
| 93 | Synthesis of N-Doped meso-macroporous carbon and its application to SO2 absorption. Russian<br>Journal of Physical Chemistry A, 2014, 88, 2397-2404.                    | 0.6 | 1         |
| 94 | Preparation of an N-doped mesoporous carbon sphere and sheet composite as a high-performance supercapacitor. Journal of Chemical Research, 2020, , 174751982093989.     | 1.3 | 1         |
| 95 | Synthesis of nitrogen-doped porous carbon by solid grinding for supercapacitors. Journal of<br>Materials Science: Materials in Electronics, 2020, 31, 21478-21485.      | 2.2 | 1         |