Bin Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2038145/publications.pdf

Version: 2024-02-01

208 5,123 35 58
papers citations h-index g-index

211 211 5733
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Cs ₂ CO ₃ -Promoted [3 + 2] Cyclization of Chalcone and <i>N</i> -Tosylhydrazone. Polycyclic Aromatic Compounds, 2023, 43, 3827-3839.	2.6	O
2	Effect of nanocomposite as pour point depressant on the cold flow properties and crystallization behavior of diesel fuel. Chinese Chemical Letters, 2022, 33, 2677-2680.	9.0	15
3	Construction of graphitic-N-rich TiO2-N-C interfaces via dye dissociation and reassembly for efficient oxygen evolution reaction. Chemical Engineering Journal, 2022, 431, 133246.	12.7	11
4	A Highly Active In Situ Zn(CH ₃ COO) ₂ -NC Catalyst for the Acetoxylation of Acetylene. Industrial & Engineering Chemistry Research, 2022, 61, 1313-1321.	3.7	5
5	Photocatalytic Benzylic Oxidation Promoted by Eosin Y in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 1822-1828.	6.7	17
6	Influence of Pdâ€Doping on The Efficiency of In ₂ O ₃ /ZrO ₂ Catalysts Used for Hydrogenating Dimethyl Oxalate to Ethanol. ChemistrySelect, 2022, 7, .	1.5	3
7	Photoâ€Assisted CO/CO ₂ Methanation over Ni/TiO ₂ Catalyst: Experiment and Density Functional Theory Calculation. ChemCatChem, 2022, 14, .	3.7	3
8	MOFs-Derived Zn-Based Catalysts in Acetylene Acetoxylation. Nanomaterials, 2022, 12, 98.	4.1	11
9	A soft tubular model reactor based on the bionics of a small intestine: anti particulate fouling by peristalsis. Brazilian Journal of Chemical Engineering, 2022, 39, 123-136.	1.3	1
10	One-pot fabrication of a polydopamine-based nanoplatform for GSH triggered trimodal ROS-amplification for cancer therapy. Biomaterials Science, 2022, 10, 4208-4217.	5.4	9
11	Confined Jet Impingement Continuous Microchannel Reactor Synthesis of Ultrahigh-Quality Mesoporous Silica Nanospheres for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2022, 61, 9300-9310.	3.7	2
12	High nitrogen carbon material with rich defects as a highly efficient metal-free catalyst for excellent catalytic performance of acetylene hydrochlorination. Chinese Journal of Chemical Engineering, 2021, 29, 196-203.	3.5	9
13	Hemilabile <i>N</i> à€heterocyclic carbene and nitrogen ligands on Fe (II) catalyst for utilization of CO ₂ into cyclic carbonate. Applied Organometallic Chemistry, 2021, 35, e6099.	3.5	5
14	NaKB ₆ O ₉ F ₂ : a new complex alkali metal fluorooxoborate with puckered layers. New Journal of Chemistry, 2021, 45, 2974-2980.	2.8	7
15	A visible-light photoredox-catalyzed four-component reaction for the construction of sulfone-containing quinoxalin- $2(1 < i > H < /i >)$ -ones. Organic Chemistry Frontiers, 2021, 8, 5403-5409.	4.5	31
16	Nitrogen-Modified Activated Carbon Supported Cu(II)Cu(I)/NAC Catalysts for Gas–Solid Acetylene Dimerization. Catalysis Letters, 2021, 151, 2990-2995.	2.6	7
17	N-Heterocyclic carbene-nitrogen molybdenum catalysts for utilization of CO2. Polyhedron, 2021, 196, 114990.	2.2	6

Pdâ€Catalyzed N â€Arylations of 3â€Arylâ€1â€tosylâ€1 H â€pyrazolâ€5â€amines with Arylbromides and the Migration of Ts 6 Group. ChemCatChem, 2021, 13, 2641-2652.

#	Article	IF	Citations
19	Reducing N ₂ O Formation over COâ€SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem, 2021, 13, 2709-2718.	3.7	32
20	Effect of the Transforming Ag into an Active Species (Silver Chloride) for the Acetylene Hydrochlorination. ChemCatChem, 2021, 13, 4411-4418.	3.7	5
21	Selective Electrochemical Oxygenation of Alkylarenes to Carbonyls. Organic Letters, 2021, 23, 7445-7449.	4.6	19
22	Robust Artificial Solidâ€Electrolyte Interfaces with Biomimetic Ionic Channels for Dendriteâ€Free Li Metal Anodes. Advanced Energy Materials, 2021, 11, 2003496.	19.5	64
23	Organocatalytic Strategy for the Fixation of CO ₂ via Carboxylation of Terminal Alkynes. Journal of Organic Chemistry, 2021, 86, 1850-1860.	3.2	11
24	Performance Study of Zn-Co-Ni/AC Catalyst in Acetylene Acetylation. Catalysts, 2021, 11, 1271.	3.5	1
25	Cr-Catalyzed Direct <i>ortho</i> -Aminomethylation of Phenols. Journal of Organic Chemistry, 2021, 86, 17567-17580.	3.2	3
26	Overwhelming electrochemical oxygen reduction reaction of zinc-nitrogen-carbon from biomass resource chitosan via a facile carbon bath method. Chinese Chemical Letters, 2020, 31, 1207-1212.	9.0	13
27	Zinc and Nitrogen-Doped Carbon In-Situ Wrapped ZnO Nanoparticles as a High-Activity Catalyst for Acetylene Acetoxylation. Catalysis Letters, 2020, 150, 1155-1162.	2.6	12
28	A novel risedronic acid-modified Nieuwland catalyst for acetylene dimerization. Catalysis Communications, 2020, 136, 105922.	3.3	7
29	The effect of amine on the tribological properties and hydrolytic stability of borate ester additives. Research on Chemical Intermediates, 2020, 46, 1283-1295.	2.7	6
30	Hydrazinylbenzenesulfonic Acid-Modified Nieuwland Catalyst for Acetylene Dimerization Reaction. Catalysis Letters, 2020, 150, 1766-1773.	2.6	5
31	Cu(II)Cu(I)/AC Catalysts for Gas–Solid Acetylene Dimerization. Industrial & Engineering Chemistry Research, 2020, 59, 110-117.	3.7	10
32	Synthesis of hexahydrophenanthridines via the tandem reaction of benzynes. Tetrahedron, 2020, 76, 131372.	1.9	2
33	Combustion Products of Calcium Carbide Reused by Cu-Based Catalysts for Acetylene Carbonylation. ACS Omega, 2020, 5, 27692-27701.	3.5	3
34	Bio-based healable non-isocyanate polyurethanes driven by the cooperation of disulfide and hydrogen bonds. Polymer Chemistry, 2020, 11, 7524-7532.	3.9	52
35	Palladiumâ€Catalyzed Olefination of <i>N</i> â€Tosylhydrazones as <i>β</i> â€Diazo Phosphonate Precursors with Arylhalides. European Journal of Organic Chemistry, 2020, 2020, 5857-5861.	2.4	8
36	Bio-based polyesters synthesized by ring-opening copolymerizations of eugenyl glycidyl ether and cyclic anhydrides using a binuclear [OSSO]CrCl complex. Green Chemistry, 2020, 22, 5742-5750.	9.0	17

#	Article	IF	CITATIONS
37	Direct Assembly of Polysubstituted Naphthalenes via a Tandem Reaction of Benzynes and α-Cyano-β-methylenones. Journal of Organic Chemistry, 2020, 85, 14210-14218.	3.2	11
38	In Situ Ringâ€Closing Strategy for Direct Synthesis of Nâ€Heterocyclic Carbene Nickel Complexes and Their Application in Coupling of Allylic Alcohols with Aryl Boronic Acids. Advanced Synthesis and Catalysis, 2020, 362, 2930-2940.	4.3	17
39	Influence of Tetradecyl Methacrylate- <i>N</i> -α-methacrylamide Copolymers as Pour Point Depressants on the Cold Flow Property of Diesel Fuel. Energy & Energy & 2020, 34, 11976-11986.	5.1	14
40	A facile approach to synthesize CoO-Co3O4/TiO2 NAs for reinforced photoelectrocatalytic water oxidation. Journal of Solid State Electrochemistry, 2020, 24, 941-950.	2.5	4
41	Multicomponent Reaction of Phosphines, Benzynes, and CO ₂ : Facile Synthesis of Stable Zwitterionic Phosphonium Inner Salts. Journal of Organic Chemistry, 2020, 85, 8872-8880.	3.2	20
42	Highly Active and Robust Ruthenium Complexes Based on Hemilability of Hybrid Ligands for C–H Oxidation. Journal of Organic Chemistry, 2020, 85, 4324-4334.	3.2	27
43	Macroporous Carbon Material with High Nitrogen Content for Excellent Catalytic Performance of Acetylene Hydrochlorination. ChemistrySelect, 2020, 5, 878-885.	1.5	5
44	Synthesis of Benzodiazepines Through Ring Opening/Ring Closure of Benzimidazole Salts. Chemistry - A European Journal, 2020, 26, 3252-3258.	3. 3	8
45	Two-dimensional MnFeCo layered double oxide as catalyst for enhanced selective catalytic reduction of NOx with NH3 at low temperature (25–150 °C). Applied Catalysis A: General, 2020, 592, 117432.	4.3	25
46	Enhanced selective catalytic reduction of NO with CO over Cu/C nanoparticles synthetized from a Cu-benzene-1,3,5-tricarboxylate metal organic framework by a continuous spray drying process. Chemical Engineering Journal, 2020, 388, 124270.	12.7	25
47	Application of Fumed Silica as a Support during Oxidative Desulfurization. ACS Omega, 2020, 5, 378-385.	3.5	5
48	Molecular hybrid design, synthesis, in vitro and in vivo anticancer evaluation, and mechanism of action of N-acylhydrazone linked, heterobivalent Î ² -carbolines. Bioorganic Chemistry, 2020, 96, 103612.	4.1	8
49	Rational Design of Cobalt Complexes Based on the <i>trans</i> Effect of Hybrid Ligands and Evaluation of their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics, 2020, 39, 3546-3561.	2.3	18
50	Fe ₃ O ₄ /Fe ₃ C@Nitrogenâ€Doped Carbon for Enhancing Oxygen Reduction Reaction. ChemNanoMat, 2019, 5, 187-193.	2.8	15
51	Gas–solid acetylene dimerization over copper-based catalysts. New Journal of Chemistry, 2019, 43, 13608-13615.	2.8	13
52	Two-dimensional NiAl layered double oxides as non-noble metal catalysts for enhanced CO methanation performance at low temperature. Fuel, 2019, 255, 115770.	6.4	26
53	Synthesis of 9-biarylfluorenes by one-pot, three-step reactions of <i>N</i> -tosylhydrazones, <i>p</i> -bromobenzeneboronic acid, and arylboronic acids. Journal of Chemical Research, 2019, 43, 268-273.	1.3	2
54	Highly Stereo-Controlled Synthesis of Fatty Acid-Derived Cyclic Carbonates by Using Iron(II) Complex and Nucleophilic Halide. Journal of Organic Chemistry, 2019, 84, 11407-11416.	3.2	24

#	Article	IF	Citations
55	A Review of Recent Advances of Dielectric Barrier Discharge Plasma in Catalysis. Nanomaterials, 2019, 9, 1428.	4.1	73
56	Synthesis of 4â€Arylâ€1,2,3â€Thiadiazoles via NH 4 lâ€Catalyzed Cyclization of N â€Tosylhydrazones with Sulfur. ChemistrySelect, 2019, 4, 10587-10590.	1.5	8
57	Extraction-Induced Fabrication of Yolk–Shell-Structured Nanoparticles with Deformable Micellar Cores and Mesoporous Silica Shells for Multidrug Delivery. ACS Applied Bio Materials, 2019, 2, 5707-5716.	4.6	9
58	A Review on the Promising Plasma-Assisted Preparation of Electrocatalysts. Nanomaterials, 2019, 9, 1436.	4.1	29
59	DBD Plasma Combined with Different Foam Metal Electrodes for CO2 Decomposition: Experimental Results and DFT Validations. Nanomaterials, 2019, 9, 1595.	4.1	13
60	Mn-Ce-Fe-Al mixed oxide nanoparticles via a high shear mixer facilitated coprecipitation method for low temperature selective catalytic reduction of NO with NH3. Applied Catalysis A: General, 2019, 586, 117237.	4.3	23
61	Two-dimensional MnAl mixed-metal oxide nanosheets prepared via a high-shear-mixer-facilitated coprecipitation method for enhanced selective catalytic reduction of NO with NH3. Chemical Engineering and Processing: Process Intensification, 2019, 145, 107664.	3.6	10
62	A Critical Review of Recent Progress and Perspective in Practical Denitration Application. Catalysts, 2019, 9, 771.	3.5	27
63	NH4I/1,10-phenanthroline catalyzed direct sulfenylation of N-heteroarenes with ethyl arylsulfinates. Tetrahedron, 2019, 75, 130664.	1.9	27
64	Facial synthesis of sulfinic esters via copper-catalyzed reaction of sulfonyl hydrazides with alcohols in air. Journal of Saudi Chemical Society, 2019, 23, 1102-1108.	5.2	9
65	Synthesis and biological evaluation of novel N9-heterobivalent \hat{l}^2 -carbolines as angiogenesis inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 375-387.	5.2	9
66	One-step synthesis of nickel–iron layered double hydroxides with tungstate acid anions <i>via</i> flash nano-precipitation for the oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 237-244.	4.9	45
67	Nonâ€Mercury Catalytic Acetylene Hydration over Bimetallic Cu–Zn Catalysts for Acetaldehyde Production in Gasâ€Liquid System. ChemistrySelect, 2019, 4, 7096-7101.	1.5	6
68	Synthesis of Benzo[<i>b</i>]fluoranthenes and Spiroacridines from Fluorene-Derived Alkenes and <i>N</i> -Arylimines via a Tandem Reaction with Benzynes. Organic Letters, 2019, 21, 3496-3500.	4.6	28
69	Modulation of perovskite-related frameworks induced by alkaline earth metals in phosphate fluorides A ₂ MPO ₄ F (A = K, Rb; M = Ba, Ca). New Journal of Chemistry, 2019, 43, 7839-7845.	2.8	6
70	Enhanced selective catalytic reduction of NO with NH3 via porous micro-spherical aggregates of Mn–Ce–Fe–Ti mixed oxide nanoparticles. Green Energy and Environment, 2019, 4, 311-321.	8.7	40
71	Enhanced Photocatalytic Degradation of Organic Dyes via Defect-Rich TiO2 Prepared by Dielectric Barrier Discharge Plasma. Nanomaterials, 2019, 9, 720.	4.1	46
72	Sequentially Formations of Csp 3 â€Csp 2 and Csp 2 â€Csp 2 Bonds by a Oneâ€pot Reaction Involving N â€Tosylhydrazone and p â€Bromobenzeneboronic Acid. ChemistrySelect, 2019, 4, 4496-4498.	1.5	6

#	Article	IF	CITATIONS
73	Association equilibrium model. I. Influence of pH and salt concentration on ion-exchanger. Journal of Chromatography A, 2019, 1595, 49-57.	3.7	1
74	Enhanced CO ₂ decomposition via metallic foamed electrode packed in self-cooling DBD plasma device. Plasma Science and Technology, 2019, 21, 085504.	1.5	24
75	Onâ€Site Surface Coordination Complexation via Mechanochemistry for Versatile Metal–Phenolic Networks Films. Advanced Materials Interfaces, 2019, 6, 1801789.	3.7	10
76	Enhanced low-temperature catalytic carbon monoxide methanation performance <i>via</i> vermiculite-derived silicon carbide-supported nickel nanoparticles. Sustainable Energy and Fuels, 2019, 3, 965-974.	4.9	19
77	Effect of Phosphorus Ligand on Cu-Based Catalysts for Acetylene Hydrochlorination. ACS Sustainable Chemistry and Engineering, 2019, 7, 6170-6177.	6.7	61
78	Nitrogen self-doped porous carbon nanosheets derived from azo dye flocs for efficient supercapacitor electrodes. Carbon Letters, 2019, 29, 455-460.	5.9	3
79	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie - International Edition, 2019, 58, 2397-2401.	13.8	178
80	Heteroatomâ€Doped Porous Carbon Materials with Unprecedented High Volumetric Capacitive Performance. Angewandte Chemie, 2019, 131, 2419-2423.	2.0	34
81	Cascade Reaction of Arylboronic Acids and 2′-Cyano-biaryl-2-aldehyde <i>N</i> -Tosylhydrazones: Access to Functionalized 9-Amino-10-arylphenanthrenes. Journal of Organic Chemistry, 2019, 84, 204-215.	3.2	32
82	Highly selective catalytic reduction of NOx by MnOx–CeO2–Al2O3 catalysts prepared by self-propagating high-temperature synthesis. Journal of Environmental Sciences, 2019, 75, 124-135.	6.1	31
83	Synthesis of 9-phenol-substituted xanthenes by cascade O-insertion/1,6-conjugate addition of benzyne with ortho-hydroxyphenyl substituted para-quinone methides. Chinese Chemical Letters, 2019, 30, 386-388.	9.0	27
84	2,6-Bis(2-methylhydrazine-1-carbonyl)pyridine 1-oxide as an Efficient Ligand for Copper-Catalyzed C–N Coupling Reaction in Water. Catalysis Letters, 2018, 148, 1142-1149.	2.6	9
85	Acetoxylation of acetylene to vinyl acetate monomer over bimetallic Zn-Ni/AC catalysts. Catalysis Communications, 2018, 112, 5-9.	3.3	19
86	Divergent synthesis of functionalized thioethers via multicomponent reaction of benzynes. Tetrahedron, 2018, 74, 2876-2883.	1.9	19
87	Zn–Cu bimetallic catalysts supported on pure silica MCM-41 for acetylene hydration reaction. New Journal of Chemistry, 2018, 42, 6507-6514.	2.8	26
88	Nâ€Heterocyclic Carbene atalyzed Double Michael Addition: Stereoselective Synthesis of Spirofluorenes and Multisubstituted Indanes. Advanced Synthesis and Catalysis, 2018, 360, 1704-1710.	4.3	12
89	Synthesis and structure-activity relationships of asymmetric dimeric \hat{l}^2 -carboline derivatives as potential antitumor agents. European Journal of Medicinal Chemistry, 2018, 147, 253-265.	5.5	18
90	Highly Selective β â€Hydride Elimination in the Pdâ€Catalyzed Crossâ€Coupling of N â€Tosylhydrazones with Benzyl Bromides. ChemistrySelect, 2018, 3, 900-903.	1.5	14

#	Article	IF	CITATIONS
91	Nitrogen and Sulfur Self-Doped Activated Carbon Directly Derived from Elm Flower for High-Performance Supercapacitors. ACS Omega, 2018, 3, 4724-4732.	3.5	122
92	Synthesis of f of f or f	2.1	5
93	Heteroatom-doped porous carbon from methyl orange dye wastewater for oxygen reduction. Green Energy and Environment, 2018, 3, 172-178.	8.7	39
94	High-efficiency removal of NO _x using dielectric barrier discharge nonthermal plasma with water as an outer electrode. Plasma Science and Technology, 2018, 20, 014020.	1.5	16
95	Ultralow-weight loading Ni catalyst supported on two-dimensional vermiculite for carbon monoxide methanation. Chinese Journal of Chemical Engineering, 2018, 26, 1873-1878.	3.5	25
96	N-Doping of plasma exfoliated graphene oxide <i>via</i> dielectric barrier discharge plasma treatment for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2011-2017.	10.3	94
97	Nitrogen doped nanoflower porous carbon as a nonmetal catalyst for acetylene hydrochlorination. New Journal of Chemistry, 2018, 42, 20131-20136.	2.8	16
98	Threeâ€Dimensional Grapheneâ€based Nâ€doped Carbon Composites as Highâ€Performance Anode Materials for Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2018, 13, 3859-3864.	3.3	7
99	Effects of Coordination Ability of Nitrogen-Containing Carboxylic Acid Ligands on Nieuwland Catalyst. Catalysts, 2018, 8, 337.	3.5	14
100	Highly Active Aminoâ€Modified MCMâ€41â€Supported Zinc Catalyst for Acetylene Hydration to Acetaldehyde. ChemistrySelect, 2018, 3, 9603-9609.	1.5	10
101	Cooperative Multifunctional Organocatalysts for Ambient Conversion of Carbon Dioxide into Cyclic Carbonates. ACS Catalysis, 2018, 8, 9945-9957.	11.2	188
102	Synthesis of Both Powdered and Preformed MnO <i>_{x< sub>< i>â€"CeO_{2< sub>â€"Al_{2< sub>O_{3< sub>Catalysts by Self-Propagating High-Temperature Synthesis for the Selective Catalytic Reduction of NO<i>_{x< sub>< i>with NH_{3< sub>. ACS Omega, 2018, 3, 5692-5703.}}</i>}}}}</i>	3.5	17
103	Heteropoly acid supported on sodium dodecyl benzene sulfonate modified layered double hydroxides as catalysts for oxidative desulfurization. New Journal of Chemistry, 2018, 42, 12830-12837.	2.8	26
104	Clarification of Active Sites at Interfaces between Silica Support and Nickel Active Components for Carbon Monoxide Methanation. Catalysts, 2018, 8, 293.	3.5	15
105	Enhanced Low Temperature NO Reduction Performance via MnOx-Fe2O3/Vermiculite Monolithic Honeycomb Catalysts. Catalysts, 2018, 8, 100.	3.5	38
106	A Novel High-Activity Zn-Co Catalyst for Acetylene Acetoxylation. Catalysts, 2018, 8, 239.	3.5	11
107	DBD Plasma-ZrO2 Catalytic Decomposition of CO2 at Low Temperatures. Catalysts, 2018, 8, 256.	3.5	36
108	Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry. Materials, 2018, 11, 221.	2.9	32

#	Article	IF	Citations
109	Pd-Catalyzed, Highly Selective C(sp2)-Br Bond Coupling Reactions of o-(or m-, or p-) Chloromethyl Bromobenzene with Arylboronic Acids. Molecules, 2018, 23, 433.	3.8	3
110	Design, Synthesis, and Antifungal Activity of Novel Aryl-1,2,3-Triazole-β-Carboline Hybrids. Molecules, 2018, 23, 1344.	3.8	20
111	Three-Dimensional Honeycomb-Like Porous Carbon with Both Interconnected Hierarchical Porosity and Nitrogen Self-Doping from Cotton Seed Husk for Supercapacitor Electrode. Nanomaterials, 2018, 8, 412.	4.1	52
112	Pdâ€Catalyzed Chemoselective Suzukiâ€Miyaura Reactions of 1â€Bromoâ€4â€(halomethyl)naphthalene. ChemistrySelect, 2018, 3, 5002-5004.	1.5	4
113	Enhanced Oxygen Vacancies in a Two-Dimensional MnAl-Layered Double Oxide Prepared via Flash Nanoprecipitation Offers High Selective Catalytic Reduction of NOx with NH3. Nanomaterials, 2018, 8, 620.	4.1	19
114	Synthesis of 1,2-Diarylethylenes by Pd-Catalyzed One-Pot Reaction of Benzyl Halides, Tosylhydrazide, and Aryl Aldehydes. Letters in Organic Chemistry, 2018, 15, 709-715.	0.5	5
115	Preparation, characterization and catalytic performance of HPW/aEVM catalyst on oxidative desulfurization. RSC Advances, 2017, 7, 4681-4687.	3.6	19
116	Catalytic Pyrolysis of Bituminous Coal under Pyrolysis Gas over a Ni/MgO Catalyst. Chemical Engineering and Technology, 2017, 40, 1605-1610.	1.5	20
117	Fabrication of carbon nanotube-loaded TiO2@Agl and its excellent performance in visible-light photocatalysis. Korean Journal of Chemical Engineering, 2017, 34, 476-483.	2.7	17
118	Heteropolyacid Supported on Nitrogen-doped Onion-Like Carbon as Catalyst for Oxidative Desulfurization. ChemistrySelect, 2017, 2, 4010-4015.	1.5	8
119	Direct decomposition of CO ₂ using selfâ€cooling dielectric barrier discharge plasma. , 2017, 7, 721-730.		19
120	Effective Catalytic Performance of Plasma-Enhanced W2N/AC as Catalysts for Acetylene Hydrochlorination. Topics in Catalysis, 2017, 60, 1016-1023.	2.8	6
121	Highly Active and Stable ZrO ₂ -SiO ₂ -Supported Cu-Catalysts for the Hydrogenation of Dimethyl Oxalate to Methyl Glycolate. ChemistrySelect, 2017, 2, 4823-4829.	1.5	13
122	Substrate-Controlled Product Divergence: Silver-Catalyzed Reaction of Trifluoromethyl Ketones with Terminal Alkynes. ACS Omega, 2017, 2, 1104-1115.	3.5	8
123	Copper-Catalyzed C–N Bond Exchange of N-Heterocyclic Substituents around Pyridine and Pyrimidine Cores. Synthesis, 2017, 49, 5120-5130.	2.3	7
124	Iron(II) Bis-CNN Pincer Complex-Catalyzed Cyclic Carbonate Synthesis at Room Temperature. ACS Sustainable Chemistry and Engineering, 2017, 5, 9065-9075.	6.7	93
125	Two-dimensional porous SiO2 nanomesh supported high dispersed Ni nanoparticles for CO methanation. Chemical Engineering Journal, 2017, 326, 774-780.	12.7	28
126	Cu(<scp>II</scp>)â€Catalyzed Ligandâ€Free Oxidation of Diarylmethanes and Second Alcohols in Water. Chinese Journal of Chemistry, 2017, 35, 1391-1395.	4.9	15

#	Article	IF	Citations
127	Draft Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. SCPG-7, Isolated from Saline Soil. Genome Announcements, 2017, 5, .	0.8	0
128	Counteranion-Controlled Ag ₂ O-Mediated Benzimidazolium Ring Opening and Its Application in the Synthesis of Palladium Pincer-Type Complexes. Organometallics, 2017, 36, 4432-4442.	2.3	22
129	Zinc acetate supported on N-doped activated carbon as catalysts for acetylene acetoxylation. Chemical Engineering Journal, 2017, 309, 172-177.	12.7	34
130	Inside Back Cover: Cu(<scp>II</scp>)â€Catalyzed Ligandâ€Free Oxidation of Diarylmethanes and Second Alcohols in Water (Chin. J. Chem. 9/2017). Chinese Journal of Chemistry, 2017, 35, 1477-1477.	4.9	0
131	Nitrogen-Doped Carbon Nanoparticles for Oxygen Reduction Prepared via a Crushing Method Involving a High Shear Mixer. Materials, 2017, 10, 1030.	2.9	16
132	Multi-Component One-Pot Reaction of Aromatic Carbonyl Compounds, Tosylhydrazide, and Arylboronic Acids. Molecules, 2017, 22, 2168.	3.8	9
133	Enhanced Oxygen Reduction Reaction by In Situ Anchoring Fe2N Nanoparticles on Nitrogen-Doped Pomelo Peel-Derived Carbon. Nanomaterials, 2017, 7, 404.	4.1	39
134	Two-Dimensional Layered Double Hydroxide Derived from Vermiculite Waste Water Supported Highly Dispersed Ni Nanoparticles for CO Methanation. Catalysts, 2017, 7, 79.	3.5	19
135	Activated Carbon Supported Mo-Ti-N Binary Transition Metal Nitride as Catalyst for Acetylene Hydrochlorination. Catalysts, 2017, 7, 200.	3.5	8
136	Metal-free Reductive Coupling of Biphenyl Tosylhydrazones with Phenols or Benzyl Alcohols. Letters in Organic Chemistry, 2017, 14, .	0.5	1
137	The Preparation of Cu-g-C3N4/AC Catalyst for Acetylene Hydrochlorination. Catalysts, 2016, 6, 193.	3.5	28
138	Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors. Nanomaterials, 2016, 6, 18.	4.1	65
139	Synthesis of mesoporous TiO ₂ @C@MnO ₂ multi-shelled hollow nanospheres with high rate capability and stability for lithium-ion batteries. RSC Advances, 2016, 6, 65243-65251.	3.6	14
140	Aryne-induced dearomatized phosphonylation of electron-deficient azaarenes. RSC Advances, 2016, 6, 33606-33610.	3.6	28
141	One-pot two-step synthesis of N-arylcarbazole-based skeleton. RSC Advances, 2016, 6, 43250-43260.	3.6	7
142	Carboxylation kapok fiber as a low-cost, environmentally friendly adsorbent with remarkably enhanced adsorption capacity for cationic dyes. Research on Chemical Intermediates, 2016, 42, 5069-5085.	2.7	13
143	Oneâ€Pot Synthesis of Triarylmethanes via Metalâ€Free Reductive Coupling of Diaryl Ketones, Tosylhydrazide, and Arylboronic Acids. Chinese Journal of Chemistry, 2016, 34, 1033-1038.	4.9	22
144	A simple, fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction. Analytica Chimica Acta, 2016, 944, 51-56.	5.4	76

#	Article	IF	CITATIONS
145	Metal-free oxidation of secondary benzylic alcohols using aqueous TBHP. Synthetic Communications, 2016, 46, 1747-1758.	2.1	9
146	Effect of Pd Doping on the Cu ⁰ /Cu ⁺ Ratio of Cu-Pd/SiO ₂ Catalysts for Ethylene Glycol Synthesis from Dimethyl Oxalate. ChemistrySelect, 2016, 1, 2857-2863.	1.5	19
147	Synthesis of Unsymmetrical 1,3â€Diynes via Pd/Cuâ€Catalyzed Crossâ€Coupling of Terminal Alkynes at Room Temperature. Chinese Journal of Chemistry, 2016, 34, 895-900.	4.9	5
148	In situ SERS monitored photoactive yellow protein (PYP) chromophore model elimination, nano-catalyzed phenyl redox and I2 addition reactions. RSC Advances, 2016, 6, 111144-111147.	3.6	0
149	Efficient and recyclable copper-based MOF-catalyzed N-arylation of N-containing heterocycles with aryliodides. Organic and Biomolecular Chemistry, 2016, 14, 10861-10865.	2.8	30
150	Highly selective copperâ€catalyzed oxidation of benzyl alcohols to aromatic aldehydes in water at room temperature. Applied Organometallic Chemistry, 2016, 30, 577-580.	3.5	16
151	A novel Ni-Schiff base complex derived electrocatalyst for oxygen evolution reaction. Journal of Solid State Electrochemistry, 2016, 20, 2737-2747.	2.5	8
152	Hybridization of graphene nanosheets and carbon-coated hollow Fe ₃ O ₄ nanoparticles as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 2453-2460.	10.3	128
153	Site-Selective N-Arylation of Carbazoles with Halogenated Fluorobenzenes. Synthesis, 2016, 48, 737-750.	2.3	14
154	Glucose-assisted hydrothermal synthesis of few-layer reduced graphene oxide wrapped mesoporous TiO ₂ submicrospheres with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2016, 6, 20741-20749.	3.6	10
155	High efficient nickel/vermiculite catalyst prepared via microwave irradiation-assisted synthesis for carbon monoxide methanation. Fuel, 2016, 171, 263-269.	6.4	44
156	Novel AuCl ₃ â€"thiourea catalyst with a low Au content and an excellent catalytic performance for acetylene hydrochlorination. Catalysis Science and Technology, 2016, 6, 4254-4259.	4.1	24
157	3â€(Diphenylphosphino)propanoic acid: an efficient ligand for the Pd/Cuâ€catalyzed homoâ€coupling of terminal alkynes in the presence of oxygen at room temperature. Applied Organometallic Chemistry, 2015, 29, 736-738.	3.5	8
158	Efficient Copperâ€Catalyzed Annulation of 2â€Formylazoles with 2â€Haloanilines for the Synthesis of Pyrrole†and Imidazoleâ€Fused Quinoxalines. Chinese Journal of Chemistry, 2015, 33, 589-593.	4.9	18
159	<i>N</i> â€Heterocyclic Carbeneâ€Catalysed Direct Synthesis of Cyano Esters via Cyanationâ€Esterification Reaction of <i>α</i> â€Keto Esters. Chinese Journal of Chemistry, 2015, 33, 1211-1215.	4.9	4
160	Oneâ€pot synthesis of polyfluoroterphenyls via palladiumâ€catalyzed Suzuki–Miyaura coupling of chlorobromobenzene and Cī£¿H bond functionalization of perfluoroarenes. Applied Organometallic Chemistry, 2015, 29, 50-56.	3.5	4
161	An Efficient Copperâ€Catalyzed Oneâ€Pot Synthesis of 1â€Arylâ€1,2,3â€triazoles from Arylboronic Acids in Wate under Mild Conditions. Chinese Journal of Chemistry, 2015, 33, 1317-1320.	r 4.9	14
162	Synthesis of Terphenyl Derivatives by Pdâ€Catalyzed Suzukiâ€Miyaura Reaction of Dibromobenzene Using 2N2Oâ€Salen as a Ligand in Aqueous Solution. Chinese Journal of Chemistry, 2015, 33, 1189-1193.	4.9	7

#	Article	IF	Citations
163	Copper/l²-diketone-catalysed N-arylation of carbazoles. RSC Advances, 2015, 5, 51512-51523.	3.6	14
164	Oxidative desulfurization of a model fuel using ozone oxidation generated by dielectric barrier discharge plasma combined with Co ₃ O ₄ \hat{l}^3 -Al ₂ O ₃ catalysis. RSC Advances, 2015, 5, 96945-96952.	3.6	35
165	<i>N</i> -Heterocyclic Carbene-Catalyzed Diastereoselective Vinylogous Michael Addition Reaction of γ-Substituted Deconjugated Butenolides. Journal of Organic Chemistry, 2015, 80, 12606-12613.	3.2	28
166	N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones. Synthesis, 2015, 48, 79-84.	2.3	2
167	AIE-active mechanochromic materials based N-phenylcarbazol-substituted tetraarylethene for OLED applications. RSC Advances, 2015, 5, 19176-19181.	3.6	19
168	Phosphotungstic Acid Supported on Mesoporous Graphitic Carbon Nitride as Catalyst for Oxidative Desulfurization of Fuel. Industrial & Engineering Chemistry Research, 2015, 54, 2040-2047.	3.7	114
169	Brushing up from "anywhere―under sunlight: a universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science, 2015, 6, 2068-2073.	7.4	158
170	Non-mercury catalytic acetylene hydrochlorination over bimetallic Au–Ba(<scp>ii</scp>)/AC catalysts. Catalysis Science and Technology, 2015, 5, 1870-1877.	4.1	65
171	A ligand-free strategy for the copper-catalysed direct alkynylation of trifluoromethyl ketones. RSC Advances, 2015, 5, 10089-10093.	3.6	12
172	A simple and efficient synthesis of 9-arylfluorenes via metal-free reductive coupling of arylboronic acids and N-tosylhydrazones in situ. RSC Advances, 2015, 5, 63726-63731.	3.6	32
173	A simple and efficient 2N2O–Cu(II) complex as a catalyst for Nâ€arylation of imidazoles in water. Applied Organometallic Chemistry, 2015, 29, 468-470.	3.5	9
174	Enantioselective Organocatalyzed Oxaâ€Michael–Aldol Cascade Reactions: Construction of Chiral 4 <i>H</i> à€Chromenes with a Trifluoromethylated Tetrasubstituted Carbon Stereocenter. Advanced Synthesis and Catalysis, 2015, 357, 967-973.	4.3	20
175	Upâ€Scaled Microspherical Aggregates of LiFe _{0.4} V _{0.4} PO ₄ /C Nanocomposites as Cathode Materials for Highâ€Rate Liâ€Ion Batteries. Energy Technology, 2015, 3, 496-502.	3.8	5
176	N-heterocyclic carbene-catalysed pentafluorophenylation of aldehydes. RSC Advances, 2015, 5, 35513-35517.	3.6	15
177	Metal-free site-selective C–N bond-forming reaction of polyhalogenated pyridines and pyrimidines. RSC Advances, 2015, 5, 82097-82111.	3.6	17
178	Organocatalytic direct difluoromethylation of aldehydes and ketones with TMSCF ₂ H. RSC Advances, 2015, 5, 35421-35424.	3.6	38
179	2-Pyrrolecarbaldiminato–Cu(<scp>ii</scp>) complex catalyzed three-component 1,3-dipolar cycloaddition for 1,4-disubstituted 1,2,3-triazoles synthesis in water at room temperature. RSC Advances, 2015, 5, 6661-6665.	3.6	33
180	Two-dimensional SnS ₂ @PANI nanoplates with high capacity and excellent stability for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 3659-3666.	10.3	126

#	Article	IF	Citations
181	N-heterocyclic carbene catalyzed synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol. Journal of Saudi Chemical Society, 2015, 19, 112-115.	5.2	17
182	Copper-catalysed <i>N</i> -arylation of Pyrrole with Aryl Iodides Under Ligand-free Conditions. Journal of Chemical Research, 2014, 38, 180-182.	1.3	8
183	Palladiumâ€catalyzed direct arylation of polyfluoroarene and facile synthesis of liquid crystal compounds. Applied Organometallic Chemistry, 2014, 28, 180-185.	3.5	12
184	A novel, non-metallic graphitic carbon nitride catalyst for acetylene hydrochlorination. Journal of Catalysis, 2014, 311, 288-294.	6.2	148
185	Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene. Fuel Processing Technology, 2014, 118, 20-27.	7.2	95
186	Novel catalyst by immobilizing a phosphotungstic acid on polymer brushes and its application in oxidative desulfurization. RSC Advances, 2014, 4, 16769-16776.	3.6	46
187	Transition-metal-free synthesis of multisubstituted N-arylindoles via reaction of arynes and \hat{l}_{\pm} -amino ketones. Tetrahedron, 2014, 70, 2400-2405.	1.9	28
188	Mussel-inspired chemistry for one-step synthesis of N-doped carbon–gold composites with morphology tailoring and their catalytic properties. RSC Advances, 2014, 4, 1853-1856.	3.6	16
189	Specific Cu(<scp>ii</scp>) detection using a novel tricarbazolyl-tristriazolotriazine based on photoinduced charge transfer. RSC Advances, 2014, 4, 13161-13166.	3.6	8
190	Mechanism studies of LiFePO ₄ cathode material: lithiation/delithiation process, electrochemical modification and synthetic reaction. RSC Advances, 2014, 4, 54576-54602.	3.6	44
191	Nitrogenâ€Doped Pitchâ€Based Spherical Active Carbon as a Nonmetal Catalyst for Acetylene Hydrochlorination. ChemCatChem, 2014, 6, 2339-2344.	3.7	55
192	Selective C–N Bondâ€Forming Reaction of 2,6â€Dibromopyridine with Amines. European Journal of Organic Chemistry, 2014, 2014, 6493-6500.	2.4	32
193	A novel high-stability Au(III)/Schiff-based catalyst for acetylene hydrochlorination reaction. Catalysis Communications, 2014, 54, 61-65.	3.3	47
194	Diastereoselective Synthesis of $\langle i \rangle N \langle i \rangle$ -Aryl Tetrahydroquinolines and $\langle i \rangle N \langle i \rangle$ -Aryl Indolines by the Tandem Reaction of Arynes. Journal of Organic Chemistry, 2014, 79, 5820-5826.	3.2	32
195	Optimization of Dilute Alkali Extraction of Crude Polysaccharides from Mixotrophic Chlorella spXJY. Food Science and Technology Research, 2014, 20, 51-58.	0.6	1
196	Metallomicelles of palladium(II) complexes as efficient catalysts for the Suzuki–Miyaura reaction in neat water. Applied Organometallic Chemistry, 2013, 27, 494-498.	3.5	14
197	A novel [Bmim]PW/HMS catalyst with high catalytic performance for the oxidative desulfurization process. Korean Journal of Chemical Engineering, 2013, 30, 314-320.	2.7	21
198	A rapid and efficient catalysis system for the synthesis of 4â€vinylbiphenyl derivatives. Applied Organometallic Chemistry, 2013, 27, 707-710.	3.5	6

#	Article	IF	Citations
199	A Simple and Efficient Copper(II) Complex as a Catalyst for <i>N</i> â€Arylation of Imidazoles. Chinese Journal of Chemistry, 2013, 31, 267-270.	4.9	15
200	Constructing novel doubleâ€bondâ€containing wellâ€defined amphiphilic graft copolymers via successive Niâ€catalyzed living coordination polymerization and SET‣RP. Journal of Polymer Science Part A, 2013, 51, 1942-1949.	2.3	9
201	Synthesis of a wellâ€defined polyalleneâ€based amphiphilic graft copolymer via sequential living coordination polymerization and SET‣RP. Journal of Polymer Science Part A, 2013, 51, 1880-1886.	2.3	11
202	Diastereoselective Synthesis of \hat{I}^3 -Butenolides Catalyzed by Potassium tert-Butoxide. Synthetic Communications, 2012, 42, 1226-1233.	2.1	3
203	Hydrochlorination of acetylene to vinyl chloride monomer over bimetallic Au–La/SAC catalysts. Journal of Industrial and Engineering Chemistry, 2012, 18, 49-54.	5.8	118
204	Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Frontiers of Chemical Science and Engineering, 2011, 5, 514-520.	4.4	92
205	Synthesis, structure and biological activity of diorganotin derivatives with pyridyl functionalized bis(pyrazolâ€1â€yl)methanes. Applied Organometallic Chemistry, 2010, 24, 669-674.	3.5	25
206	Synthesis, structure, and fungicidal activity of triorganotin (4 <i>H</i> à€1,2,4â€triazolâ€4â€yl)benzoates. Heteroatom Chemistry, 2009, 20, 411-417.	0.7	3
207	Optimization of semi-continuous cultivation conditions for the improvement of lipid productivity from thermo-tolerant <i>Chlorella vulgaris</i> XJW. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	2.3	0
208	Bal3O9OH: A new alkaline-earth metal hydroxy iodates with two groups. New Journal of Chemistry, 0, ,	2.8	1