Yongjun Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2038128/publications.pdf

Version: 2024-02-01

113	4,432	38	62
papers	citations	h-index	g-index
118	118	118	5419
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials, 2022, 15, 895.	2.9	31
2	Synthesis and electrocatalytic performance of N-doped graphene embedded with Co/CoO nanoparticles towards oxygen evolution and reduction reactions. Catalysis Communications, 2022, 164, 106428.	3.3	8
3	ZnO/BiFeO ₃ heterojunction interface modulation and rGO modification for detection of triethylamine. Journal of Materials Chemistry C, 2022, 10, 8015-8023.	5.5	3
4	Heterostructures based on transition metal chalcogenides and layered double hydroxides for enhanced water splitting. Current Opinion in Electrochemistry, 2022, 34, 101016.	4.8	5
5	Perylene diimide derivative dispersed in LDH as a new efficient red-emitting phosphor for LED applications. Journal of Materials Chemistry C, 2022, 10, 9989-10000.	5.5	2
6	Reduced graphene oxide decorated SnO2/BiVO4 photoanode for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2021, 855, 156780.	5 . 5	31
7	Oxygen vacancies engineering by coordinating oxygen-buffering CeO2 with CoO nanorods as efficient bifunctional oxygen electrode electrocatalyst. Journal of Energy Chemistry, 2021, 59, 615-625.	12.9	49
8	FeCo nanoalloys embedded in nitrogen-doped carbon nanosheets/bamboo-like carbon nanotubes for the oxygen reduction reaction. Inorganic Chemistry Frontiers, 2021, 8, 109-121.	6.0	25
9	A First Wideâ€Open LDH Structure Hosting InP/ZnS QDs: A New Route Toward Efficient and Photostable Redâ€Emitting Phosphor. Advanced Materials, 2021, 33, e2103411.	21.0	10
10	Wearable, Washable, and Highly Sensitive Piezoresistive Pressure Sensor Based on a 3D Sponge Network for Real-Time Monitoring Human Body Activities. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46848-46857.	8.0	61
11	Layered double hydroxides as thermal stabilizers for Poly(vinyl chloride): A review. Applied Clay Science, 2021, 211, 106198.	5.2	26
12	Co-assembled photoactive organic molecules into layered double hydroxide as fluorescent fillers for silicone films. Materials Today Communications, 2021, 28, 102479.	1.9	4
13	Size-dependent Effect of MgAl-Layered Double Hydroxides Derived from Mg(OH)2 on Thermal Stability of Poly(vinyl chloride). Materials Today Communications, 2021, , 102851.	1.9	5
14	Simultaneous detection of multiple neuroendocrine tumor markers in patient serum with an ultrasensitive and antifouling electrochemical immunosensor. Biosensors and Bioelectronics, 2021, 194, 113603.	10.1	19
15	Batch and fixed-bed adsorption behavior of porous boehmite with high percentage of exposed (020) facets and surface area towards Congo red. Inorganic Chemistry Frontiers, 2021, 8, 735-745.	6.0	4
16	Recent Progress on Transition Metal Based Layered Double Hydroxides Tailored for Oxygen Electrode Reactions. Catalysts, 2021, 11, 1394.	3.5	8
17	rGO modified nanoplate-assembled ZnO/CdO junction for detection of NO2. Journal of Hazardous Materials, 2020, 394, 121832.	12.4	51
18	Inâ€Situ Selfâ€6upporting Cobalt Embedded in Nitrogenâ€Doped Porous Carbon as Efficient Oxygen Reduction Electrocatalysts. ChemElectroChem, 2020, 7, 4024-4030.	3.4	7

#	Article	IF	Citations
19	Synergetic light stabilizing effects of reducing agent and UV absorber co-intercalated layered double hydroxides for polypropylene. Applied Clay Science, 2020, 194, 105700.	5.2	10
20	An aqueous miscible organic (AMO) process for layered double hydroxides (LDHs) for the enhanced properties of polypropylene/LDH composites. New Journal of Chemistry, 2020, 44, 10119-10126.	2.8	8
21	Unitized Regenerative Alkaline Microfluidic Cell Based on Platinum Group Metal-Free Electrode Materials. ACS Applied Energy Materials, 2020, 3, 7397-7403.	5.1	11
22	Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO-ln2O3 heterostructures. Journal of Hazardous Materials, 2020, 391, 122191.	12.4	162
23	Novel Strategy to Prepare Mesoporous Sn-Doped Co ₃ O ₄ Whiskers with High Sensitivity to Toluene. Industrial & Engineering Chemistry Research, 2020, 59, 4472-4482.	3.7	28
24	Synthesis of novel BiVO4/Cu2O heterojunctions for improving BiVO4 towards NO2 sensing properties. Journal of Colloid and Interface Science, 2020, 567, 37-44.	9.4	29
25	Novel ultrathin mesoporous ZnO-SnO2 n-n heterojunction nanosheets with high sensitivity to ethanol. Sensors and Actuators B: Chemical, 2020, 309, 127801.	7.8	70
26	Cobalt-Based Multicomponent Oxygen Reduction Reaction Electrocatalysts Generated by Melamine Thermal Pyrolysis with High Performance in an Alkaline Hydrogen/Oxygen Microfuel Cell. ACS Applied Materials & Diterfaces, 2020, 12, 21605-21615.	8.0	40
27	Design, fabrication and anti-aging behavior of a multifunctional inorganic–organic hybrid stabilizer derived from co-intercalated layered double hydroxides for polypropylene. Inorganic Chemistry Frontiers, 2019, 6, 2539-2549.	6.0	9
28	HALS intercalated layered double hydroxides as an efficient light stabilizer for polypropylene. Applied Clay Science, 2019, 180, 105196.	5.2	8
29	Recent Progress on Adsorption Materials for Phosphate Removal. Recent Patents on Nanotechnology, 2019, 13, 3-16.	1.3	39
30	Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions. Catalysts, 2019, 9, 731.	3.5	7
31	An integrating photoanode consisting of BiVO ₄ , rGO and LDH for photoelectrochemical water splitting. Dalton Transactions, 2019, 48, 16091-16098.	3.3	37
32	Nitrogen-Doped Ordered Mesoporous Carbons Supported Co3O4 Composite as a Bifunctional Oxygen Electrode Catalyst. Surfaces, 2019, 2, 229-240.	2.3	10
33	Ethylene glycol-assisted fabrication and superb adsorption capacity of hierarchical porous flower-like magnesium oxide microspheres for phosphate. Inorganic Chemistry Frontiers, 2019, 6, 1952-1961.	6.0	37
34	Facile Fabrication of Mesoporous Hierarchical Co-Doped ZnO for Highly Sensitive Ethanol Detection. Industrial & Detection Chemistry Research, 2019, 58, 8061-8071.	3.7	29
35	A new green, energy-saving, and pressing refining process for the recovery of ultrahigh-purity lead in alkaline solution from spent lead plate grids. Ionics, 2019, 25, 3979-3990.	2.4	9
36	UV absorber co-intercalated layered double hydroxides as efficient hybrid UV-shielding materials for polypropylene. Dalton Transactions, 2019, 48, 2750-2759.	3.3	19

#	Article	IF	Citations
37	An energy saving and fluorine-free electrorefining process for ultrahigh purity lead refining. Chinese Journal of Chemical Engineering, 2019, 27, 1191-1199.	3.5	9
38	Ordered mesoporous WO3/ZnO nanocomposites with isotype heterojunctions for sensitive detection of NO2. Sensors and Actuators B: Chemical, 2019, 285, 68-75.	7.8	60
39	Pyrolyzing Co/Zn bimetallic organic framework to form p-n heterojunction of Co3O4/ZnO for detection of formaldehyde. Sensors and Actuators B: Chemical, 2019, 285, 291-301.	7.8	76
40	Template-free synthesis of three-dimensional NiFe-LDH hollow microsphere with enhanced OER performance in alkaline media. Journal of Energy Chemistry, 2019, 33, 130-137.	12.9	121
41	Micrometer-sized dihydrogenphosphate-intercalated layered double hydroxides: synthesis, selective infrared absorption properties, and applications as agricultural films. Dalton Transactions, 2018, 47, 3144-3154.	3.3	12
42	Design and Synthesis of Cobaltâ€Based Electrocatalysts for Oxygen Reduction Reaction. Chemical Record, 2018, 18, 840-848.	5.8	11
43	Novel α-Fe2O3/BiVO4 heterojunctions for enhancing NO2 sensing properties. Sensors and Actuators B: Chemical, 2018, 268, 136-143.	7.8	49
44	Synthesis of Co3O4/TiO2 composite by pyrolyzing ZIF-67 for detection of xylene. Applied Surface Science, 2018, 435, 384-392.	6.1	61
45	Improved Electrocatalytic Performance of Tailored Metalâ€Free Nitrogenâ€Doped Ordered Mesoporous Carbons for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1899-1904.	3.4	15
46	Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3. Applied Surface Science, 2018, 428, 526-533.	6.1	89
47	Carbon fiber paper@MgO films: in situ fabrication and high-performance removal capacity for phosphate anions. Environmental Science and Pollution Research, 2018, 25, 34788-34792.	5.3	15
48	Recent Advances of Cobalt-Based Electrocatalysts for Oxygen Electrode Reactions and Hydrogen Evolution Reaction. Catalysts, 2018, 8, 559.	3.5	107
49	Co-intercalated layered double hydroxides as thermal and photo-oxidation stabilizers for polypropylene. Beilstein Journal of Nanotechnology, 2018, 9, 2980-2988.	2.8	3
50	Low molecular weight hindered amine light stabilizers (HALS) intercalated MgAl-Layered double hydroxides: Preparation and anti-aging performance in polypropylene nanocomposites. Polymer Degradation and Stability, 2018, 154, 55-61.	5.8	28
51	Cu ₂ O and rGO Hybridizing for Enhancement of Low-Concentration NO ₂ Sensing at Room Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 10086-10094.	3.7	33
52	Fabrication and Adsorption Behavior of Magnesium Silicate Hydrate Nanoparticles towards Methylene Blue. Nanomaterials, 2018, 8, 271.	4.1	23
53	Surfactantâ€Assisted Fabrication of Cubic Cobalt Oxide Hybrid Hollow Spheres as Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2192-2198.	3.4	8
54	Novel Carbon Paper@Magnesium Silicate Composite Porous Films: Design, Fabrication, and Adsorption Behavior for Heavy Metal lons in Aqueous Solution. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22776-22785.	8.0	43

#	Article	IF	CITATIONS
55	Superb removal capacity of hierarchically porous magnesium oxide for phosphate and methyl orange. Environmental Science and Pollution Research, 2018, 25, 24907-24916.	5.3	26
56	Controllable Synthesis and Bi-functional Electrocatalytic Performance towards Oxygen Electrode Reactions of Co3O4/N-RGO Composites. Electrochimica Acta, 2017, 226, 104-112.	5.2	23
57	Doping Metal Elements of WO ₃ for Enhancement of NO ₂ -Sensing Performance at Room Temperature. Industrial & Engineering Chemistry Research, 2017, 56, 2616-2623.	3.7	53
58	Tuning the Adsorption Properties of Layered Double Hydroxides to Tailor Highly Active Oxygen Bifunctional Electrocatalysts. Journal of the Electrochemical Society, 2017, 164, F491-F498.	2.9	8
59	Antioxidant intercalated Zn-containing layered double hydroxides: preparation, performance and migration properties. New Journal of Chemistry, 2017, 41, 2364-2371.	2.8	15
60	Template-free Synthesis of Large-Pore-Size Porous Magnesium Silicate Hierarchical Nanostructures for High-Efficiency Removal of Heavy Metal Ions. ACS Sustainable Chemistry and Engineering, 2017, 5, 2774-2780.	6.7	51
61	Antioxidant intercalated hydrocalumite as multifunction nanofiller for Poly(propylene): Synthesis, thermal stability, light stability, and anti-migration property. Polymer Degradation and Stability, 2017, 140, 9-16.	5.8	16
62	Facile synthesis of mesoporous hierarchical Co ₃ O ₄ –TiO ₂ p–n heterojunctions with greatly enhanced gas sensing performance. Journal of Materials Chemistry A, 2017, 5, 10387-10397.	10.3	116
63	Facile Color Tuning, Characterization, and Application of Acid Green 25 and Acid Yellow 25 Co-intercalated Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2017, 56, 5495-5504.	3.7	13
64	Fabrication and Bifunctional Electrocatalytic Performance of Ternary CoNiMn Layered Double Hydroxides/Polypyrrole/Reduced Graphene Oxide Composite for Oxygen Reduction and Evolution Reactions. Electrochimica Acta, 2017, 245, 59-68.	5.2	63
65	Electrocatalytic Cobalt Nanoparticles Interacting with Nitrogen-Doped Carbon Nanotube in Situ Generated from a Metal–Organic Framework for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 2541-2549.	8.0	137
66	Carbon coated chevrel phase of Mo6S8 as anode material for improving electrochemical properties of aqueous lithium-ion batteries. Electrochimica Acta, 2017, 258, 236-240.	5.2	11
67	Hexamethylene tetramine-assisted hydrothermal synthesis of porous magnesium oxide for high-efficiency removal of phosphate in aqueous solution. Journal of Environmental Chemical Engineering, 2017, 5, 4649-4655.	6.7	39
68	Carbon fiber paper supported interlayer space enlarged Ni2Fe-LDHs improved OER electrocatalytic activity. Electrochimica Acta, 2017, 258, 554-560.	5.2	43
69	Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell. Journal of Power Sources, 2017, 361, 21-30.	7.8	34
70	Facile Synthesis and Acetone Sensing Performance of Hierarchical SnO ₂ Hollow Microspheres with Controllable Size and Shell Thickness. Industrial & Engineering Chemistry Research, 2016, 55, 3588-3595.	3.7	103
71	Positive Effect of Heat Treatment on Carbon-Supported CoS Nanocatalysts for Oxygen Reduction Reaction. Catalysts, 2015, 5, 1211-1220.	3.5	9
72	Reduced Graphene Oxide Supported CoO/MnO 2 Electrocatalysts from Layered Double Hydroxides for Oxygen Reduction Reaction. Electrochimica Acta, 2015, 173, 575-580.	5.2	50

#	Article	IF	Citations
73	Facile synthesis and photocatalytic performance of ZnO nanoparticles self-assembled spherical aggregates. Materials Letters, 2015, 158, 290-294.	2.6	21
74	A simple and promoter free way to synthesize spherical \hat{I}^3 -alumina with high hydrothermal stability. Materials Letters, 2015, 155, 75-77.	2.6	14
75	Facile synthesis and gas sensing properties of tubular hierarchical ZnO self-assembled by porous nanosheets. Sensors and Actuators B: Chemical, 2015, 215, 231-240.	7.8	110
76	Acid Blue 129 and Salicylate Cointercalated Layered Double Hydroxides: Assembly, Characterization, and Photostability. Industrial & Engineering Chemistry Research, 2014, 53, 17961-17967.	3.7	14
77	Co - intercalation of Acid Red 337 and a UV Absorbent into Layered Double Hydroxides: Enhancement of Photostability. ACS Applied Materials & Samp; Interfaces, 2014, 6, 20603-20611.	8.0	34
78	Highly dispersed Pd catalyst for anthraquinone hydrogenation supported on alumina derived from a pseudoboehmite precursor. Applied Catalysis A: General, 2014, 469, 312-319.	4.3	46
79	Synthesis and Gas Sensing Performance of Dandelion-Like ZnO with Hierarchical Porous Structure. Industrial & Dandelion-Like ZnO with Hierarchical Porous Structure.	3.7	43
80	In situ synthesis and properties of ZSM-5/α-Al 2 O 3 composite. Materials Letters, 2014, 133, 278-280.	2.6	8
81	Facile synthesis of multicolor organic–inorganic hybrid pigments based on layered double hydroxides. Dyes and Pigments, 2014, 104, 131-136.	3.7	31
82	High Antioxidative Performance of Layered Double Hydroxides/Polypropylene Composite with Intercalation of Low-Molecular-Weight Phenolic Antioxidant. Industrial & Engineering Chemistry Research, 2014, 53, 2287-2292.	3.7	26
83	Size-controlled hydrothermal synthesis and high electrocatalytic performance of CoS2 nanocatalysts as non-precious metal cathode materials for fuel cells. Journal of Materials Chemistry A, 2013, 1, 5741.	10.3	77
84	Synthesis and gas sensing properties to NO2 of ZnO nanoparticles. Sensors and Actuators B: Chemical, 2013, 185, 377-382.	7.8	70
85	Synthesis and Applications of Layered Double Hydroxides Based Pigments. Recent Patents on Nanotechnology, 2012, 6, 193-199.	1.3	13
86	Layered Double Hydroxides as Flame Retardant and Thermal Stabilizer for Polymers. Recent Patents on Nanotechnology, 2012, 6, 231-237.	1.3	16
87	Fabrication and properties of acid blue 25 dye-intercalated layered double hydroxides film on an anodic alumina/aluminum substrate. Journal of Physics and Chemistry of Solids, 2012, 73, 1505-1509.	4.0	8
88	Mordant Yellow 3 Anions Intercalated Layered Double Hydroxides: Preparation, Thermo- and Photostability. Industrial & Double Hydroxides: Preparation Pr	3.7	24
89	Improving thermal stability and light fastness of Acid Red 114 by incorporating its anions in a ZnAl-layered double hydroxides matrix. Particuology, 2012, 10, 503-508.	3.6	4
90	Tolerant Chalcogenide Cathodes of Membraneless Micro Fuel Cells. ChemSusChem, 2012, 5, 1488-1494.	6.8	50

#	Article	IF	Citations
91	Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochimica Acta, 2012, 72, 129-133.	5 . 2	70
92	Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption. Materials Research Bulletin, 2012, 47, 532-536.	5.2	15
93	Synthesis and UV Absorption Properties of Aurintricarboxylic Acid Intercalated Zn–Al Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2011, 50, 13299-13303.	3.7	33
94	Highly efficient and selective infrared absorption material based on layered double hydroxides for use in agricultural plastic film. Applied Clay Science, 2011, 53, 592-597.	5.2	16
95	Functionalized-carbon nanotube supported electrocatalysts and buckypaper-based biocathodes for glucose fuel cell applications. Electrochimica Acta, 2011, 56, 7659-7665.	5. 2	42
96	Improved thermal and photostability of an anthraquinone dye by intercalation in a zinc–aluminum layered double hydroxides host. Dyes and Pigments, 2011, 90, 253-258.	3.7	54
97	Fabrication and properties of Acid Yellow 49 dye-intercalated layered double hydroxides film on an alumina-coated aluminum substrate. Dyes and Pigments, 2011, 91, 120-125.	3.7	18
98	In situ synthesis of solid base catalysts for the regeneration of degradation products formed during the anthraquinone process for the manufacture of hydrogen peroxide. Applied Catalysis A: General, 2011, 401, 163-169.	4.3	12
99	Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance. Electrochimica Acta, 2011, 56, 1009-1022.	5 . 2	114
100	Enhanced thermal- and photo-stability of acid yellow 17 by incorporation into layered double hydroxides. Journal of Solid State Chemistry, 2011, 184, 1551-1555.	2.9	26
101	Carbonâ€Supported CoSe ₂ Nanoparticles for Oxygen Reduction Reaction in Acid Medium. Fuel Cells, 2010, 10, 77-83.	2.4	27
102	Preparation and characterization of polyimide/ladder like polysiloxane hybrid films. Materials Letters, 2010, 64, 2710-2713.	2.6	10
103	Oxygen reduction reaction selectivity of RuxSey in formic acid solutions. Journal of Electroanalytical Chemistry, 2010, 648, 78-84.	3.8	12
104	Substrate effect on oxygen reduction electrocatalysis. Electrochimica Acta, 2010, 55, 7558-7563.	5.2	78
105	Intercalation chemistry in a LDH system: anion exchange process and staging phenomenon investigated by means of time-resolved, in situ X-ray diffraction. Dalton Transactions, 2010, 39, 5994.	3.3	46
106	Structure Phase Transition and Oxygen Reduction Activity in Acidic Medium of Carbon-Supported Cobalt Selenide Nanoparticles. ECS Transactions, 2009, 25, 167-173.	0.5	8
107	Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochimica Acta, 2009, 54, 5252-5256.	5.2	116
108	Nonprecious metal catalysts for the molecular oxygenâ€reduction reaction. Physica Status Solidi (B): Basic Research, 2008, 245, 1792-1806.	1.5	167

Yongjun Feng

#	Article	IF	CITATIONS
109	In situ Free-Surfactant Synthesis and ORR- Electrochemistry of Carbon-Supported Co ₃ S ₄ and CoSe ₂ Nanoparticles. Chemistry of Materials, 2008, 20, 26-28.	6.7	233
110	Novel Non-Precious Metal Electrocatalysts for Oxygen Reduction Based on Nanostructured Cobalt Chalcogenide. ECS Transactions, 2007, 11 , $67-73$.	0.5	11
111	Synthesis and characterization of a UV absorbent-intercalated Zn–Al layered double hydroxide. Polymer Degradation and Stability, 2006, 91, 789-794.	5.8	139
112	Selective Anion-Exchange Properties of Second-Stage Layered Double Hydroxide Heterostructures. Chemistry of Materials, 2006, 18, 4312-4318.	6.7	55
113	Synthesis of Cu-containing Layered Double Hydroxides with a Narrow Crystallite-size Distribution. Clays and Clay Minerals, 2003, 51, 566-569.	1.3	34