
## AdriÃ;n Rojas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2037460/publications.pdf Version: 2024-02-01



Δηριδιη Ροιλς

| #  | Article                                                                                                                                                                                                                                                                                                    | IF                 | CITATIONS          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 1  | Supercritical Foaming and Impregnation of Polycaprolactone and Polycaprolactone-Hydroxyapatite<br>Composites with Carvacrol. Processes, 2022, 10, 482.                                                                                                                                                     | 1.3                | 7                  |
| 2  | Foaming with scCO2 and Impregnation with Cinnamaldehyde of PLA Nanocomposites for Food<br>Packaging. Processes, 2022, 10, 376.                                                                                                                                                                             | 1.3                | 12                 |
| 3  | Effect of supercritical incorporation of cinnamaldehyde on physical-chemical properties,<br>disintegration and toxicity studies of PLA/lignin nanocomposites. International Journal of Biological<br>Macromolecules, 2021, 167, 255-266.                                                                   | 3.6                | 34                 |
| 4  | Designing Biodegradable and Active Multilayer System by Assembling an Electrospun Polycaprolactone<br>Mat Containing Quercetin and Nanocellulose between Polylactic Acid Films. Polymers, 2021, 13, 1288.                                                                                                  | 2.0                | 8                  |
| 5  | Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydrate Polymers, 2021, 261, 117849.                                                                                                                                         | 5.1                | 14                 |
| 6  | Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer<br>processing techniques. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3388-3403.                                                                                                    | 5.9                | 44                 |
| 7  | Obtaining Active Polylactide (PLA) and Polyhydroxybutyrate (PHB) Blends Based Bionanocomposites<br>Modified with Graphene Oxide and Supercritical Carbon Dioxide (scCO2)-Assisted Cinnamaldehyde:<br>Effect on Thermal-Mechanical, Disintegration and Mass Transport Properties. Polymers, 2021, 13, 3968. | 2.0                | 14                 |
| 8  | Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and<br>Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants, 2021, 10, 1976.                                                                                                | 2.2                | 32                 |
| 9  | Supercritical impregnation for food applications: a review of the effect of the operational variables on the active compound loading. Critical Reviews in Food Science and Nutrition, 2020, 60, 1290-1301.                                                                                                 | 5.4                | 38                 |
| 10 | Design of active electrospun mats with single and core-shell structures to achieve different curcumin release kinetics. Journal of Food Engineering, 2020, 273, 109900.                                                                                                                                    | 2.7                | 29                 |
| 11 | The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1760-1776.                                                                                                                   | 5.9                | 40                 |
| 12 | Effect of functionalized silica nanoparticles on the mass transfer process in active PLA<br>nanocomposite films obtained by supercritical impregnation for sustainable food packaging. Journal<br>of Supercritical Fluids, 2020, 161, 104844.                                                              | 1.6                | 37                 |
| 13 | Development of Bilayer Biodegradable Composites Containing Cellulose Nanocrystals with Antioxidant Properties. Polymers, 2019, 11, 1945.                                                                                                                                                                   | 2.0                | 23                 |
| 14 | Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl) Tj ETQq0 0 0 rgBT /C<br>of Food Engineering, 2018, 217, 1-10.                                                                                                                                                | )verlock 10<br>2.7 | Tf 50 227 Td<br>79 |
| 15 | Modifying an Active Compound's Release Kinetic Using a Supercritical Impregnation Process to<br>Incorporate an Active Agent into PLA Electrospun Mats. Polymers, 2018, 10, 479.                                                                                                                            | 2.0                | 22                 |
| 16 | Effect of pressure and time on scCO2-assisted incorporation of thymol into LDPE-based nanocomposites for active food packaging. Journal of CO2 Utilization, 2018, 26, 434-444.                                                                                                                             | 3.3                | 22                 |
| 17 | Effect of processing conditions on the physical, chemical and transport properties of polylactic acid<br>films containing thymol incorporated by supercritical impregnation. European Polymer Journal, 2017,<br>89, 195-210.                                                                               | 2.6                | 74                 |
| 18 | Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials. Food Research International, 2017, 99, 650-659.                                                                                                                            | 2.9                | 83                 |

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Assessment of kinetic release of thymol from LDPE nanocomposites obtained by supercritical<br>impregnation: Effect of depressurization rate and nanoclay content. European Polymer Journal, 2017,<br>93, 294-306. | 2.6 | 25        |
| 20 | Supercritical impregnation and kinetic release of 2-nonanone in LLDPE films used for active food packaging. Journal of Supercritical Fluids, 2015, 104, 76-84.                                                    | 1.6 | 52        |