
Matthew D Martens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2036752/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BNIP3L/Nix-induced mitochondrial fission, mitophagy, and impaired myocyte glucose uptake are abrogated by PRKA/PKA phosphorylation. Autophagy, 2021, 17, 2257-2272.	9.1	59
2	Myocardin regulates mitochondrial calcium homeostasis and prevents permeability transition. Cell Death and Differentiation, 2018, 25, 1732-1748.	11.2	38
3	Misoprostol regulates Bnip3 repression and alternative splicing to control cellular calcium homeostasis during hypoxic stress. Cell Death Discovery, 2018, 4, 37.	4.7	25
4	The molecular mosaic of regulated cell death in the cardiovascular system. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166297.	3.8	14
5	Misoprostol attenuates neonatal cardiomyocyte proliferation through Bnip3, perinuclear calcium signaling, and inhibition of glycolysis. Journal of Molecular and Cellular Cardiology, 2020, 146, 19-31.	1.9	11
6	Misoprostol treatment prevents hypoxia-induced cardiac dysfunction through a 14-3-3 and PKA regulatory motif on Bnip3. Cell Death and Disease, 2021, 12, 1105.	6.3	7
7	A new trick for an old dog? Myocardial-specific roles for prostaglandins as mediators of ischemic injury and repair. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320,	3.2	4