Jan-Olof Selroos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2036691/publications.pdf

Version: 2024-02-01

566801 525886 35 740 15 27 citations g-index h-index papers 37 37 37 749 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of shear displacement on advective transport in a laboratory-scale fracture. Geomechanics for Energy and the Environment, 2022, 31, 100278.	1.2	3
2	Rapid and sensitive response of Greenland's groundwater system to ice sheet change. Nature Geoscience, 2021, 14, 751-755.	5.4	4
3	GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the \tilde{A}_n sp \tilde{A}_n Hard Rock Laboratory, Sweden. Engineering Geology, 2021, 292, 106249.	2.9	3
4	Hydrological control of water quality – Modelling base cation weathering and dynamics across heterogeneous boreal catchments. Science of the Total Environment, 2021, 799, 149101.	3.9	3
5	Modelling the water phase diffusion experiment at Onkalo (Finland): Insights into the effect of channeling on radionuclide transport and retention. Journal of Hydrology, 2020, 590, 125399.	2.3	6
6	Which fractures are imaged with Ground Penetrating Radar? Results from an experiment in the Äspö Hardrock Laboratory, Sweden. Engineering Geology, 2020, 273, 105674.	2.9	13
7	Upscaling of radionuclide transport and retention in crystalline rocks exhibiting micro-scale heterogeneity of the rock matrix. Advances in Water Resources, 2020, 142, 103644.	1.7	8
8	A Particleâ€Based Conditional Sampling Scheme for the Simulation of Transport in Fractured Rock With Diffusion Into Stagnant Water and Rock Matrix. Water Resources Research, 2020, 56, e2019WR026958.	1.7	12
9	Inference of Retention Time From Tracer Tests in Crystalline Rock. Water Resources Research, 2020, 56, e2019WR025266.	1.7	9
10	Grains, grids and mineral surfaces: approaches to grain-scale matrix modeling based on X-ray micro-computed tomography data. SN Applied Sciences, 2019, 1, 1.	1.5	3
11	Permafrost Thaw with Thermokarst Wetland-Lake and Societal-Health Risks: Dependence on Local Soil Conditions under Large-Scale Warming. Water (Switzerland), 2019, 11, 574.	1.2	15
12	Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy. Applied Geochemistry, 2019, 101, 50-61.	1.4	26
13	Groundwater flow and heat transport for systems undergoing freeze-thaw: Intercomparison of numerical simulators for 2D test cases. Advances in Water Resources, 2018, 114, 196-218.	1.7	91
14	Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach. Journal of Hydrology, 2018, 559, 182-191.	2.3	8
15	Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock. Journal of Contaminant Hydrology, 2017, 207, 8-16.	1.6	13
16	Modelling radionuclide transport in fractured media with a dynamic update of Kd values. Computers and Geosciences, 2016, 86, 55-63.	2.0	21
17	Influence of spatial and temporal flow variability on solute transport in catchments. Hydrological Processes, 2015, 29, 3592-3603.	1.1	7
18	Data evaluation and numerical modeling of hydrological interactions between active layer, lake and talik in a permafrost catchment, Western Greenland. Journal of Hydrology, 2015, 527, 688-703.	2.3	48

#	Article	IF	Citations
19	FASTREACT – An efficient numerical framework for the solution of reactive transport problems. Applied Geochemistry, 2014, 49, 159-167.	1.4	3
20	Overview of hydrogeological site-descriptive modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeology Journal, 2014, 22, 295-298.	0.9	17
21	Groundwater flow modeling of periods with periglacial and glacial climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeology Journal, 2014, 22, 1251-1267.	0.9	11
22	Overview of hydrogeological safety assessment modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeology Journal, 2014, 22, 1229-1232.	0.9	12
23	Identification and Characterization of Potential Discharge Areas for Radionuclide Transport by Groundwater from a Nuclear Waste Repository in Sweden. Ambio, 2013, 42, 435-446.	2.8	15
24	Radionuclide transport during glacial cycles: Comparison of two approaches for representing flow transients. Physics and Chemistry of the Earth, 2013, 64, 32-45.	1.2	9
25	Exchange and pathways of deep and shallow groundwater in different climate and permafrost conditions using the Forsmark site, Sweden, as an example catchment. Hydrogeology Journal, 2013, 21, 225-237.	0.9	46
26	Modeling of groundwater flow at depth in crystalline rock beneath a moving ice-sheet margin, exemplified by the Fennoscandian Shield, Sweden. Hydrogeology Journal, 2013, 21, 239-255.	0.9	20
27	Effect of transport-pathway simplifications on projected releases of radionuclides from a nuclear waste repository (Sweden). Hydrogeology Journal, 2012, 20, 1467-1481.	0.9	24
28	Water and solute transport along hydrological pathways. Water Resources Research, 2012, 48, .	1.7	46
29	Integration of hydrological and ecological modelling for the assessment of a nuclear waste repository. Hydrogeology Journal, 2009, 17, 95-113.	0.9	15
30	An overview of Task 6 of the Äspö Task Force: modelling groundwater and solute transport: improved understanding of radionuclide transport in fractured rock. Hydrogeology Journal, 2009, 17, 1035-1049.	0.9	31
31	The Äspö Task Force on groundwater flow and transport of solutes: bridging the gap between site characterization and performance assessment for radioactive waste disposal in fractured rocks. Hydrogeology Journal, 2009, 17, 1031-1033.	0.9	19
32	The SR 97 Safety Assessment of a KBS 3 Repository for Spent Nuclear Fuel – Overview, Review Comments and New Developments. Materials Research Society Symposia Proceedings, 2002, 713, 1.	0.1	0
33	Power-law velocity distributions in fracture networks: Numerical evidence and implications for tracer transport. Geophysical Research Letters, 2002, 29, 20-1-20-4.	1.5	56
34	Comparison of alternative modelling approaches for groundwater flow in fractured rock. Journal of Hydrology, 2002, 257, 174-188.	2.3	120
35	SR 97: Post-Closure Safety for a KBS 3 Deep Repository for Spent Nuclear Fuel - Overview Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	3