
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2035859/publications.pdf Version: 2024-02-01

FDNEST FDAENKEI

#	Article	IF	CITATIONS
1	Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines. Nature Neuroscience, 2022, 25, 226-237.	7.1	66
2	Self-supervised learning of cell type specificity from immunohistochemical images. Bioinformatics, 2022, 38, i395-i403.	1.8	5
3	Phenotyping Neurodegeneration in Human iPSCs. Annual Review of Biomedical Data Science, 2021, 4, 83-100.	2.8	3
4	Genome-scale screens identify factors regulating tumor cell responses to natural killer cells. Nature Genetics, 2021, 53, 1196-1206.	9.4	47
5	Immortalized striatal precursor neurons from Huntington's disease patient-derived iPS cells as a platform for target identification and screening for experimental therapeutics. Human Molecular Genetics, 2021, 30, 2469-2487.	1.4	7
6	An integrated multi-omic analysis of iPSC-derived motor neurons from C9ORF72 ALS patients. IScience, 2021, 24, 103221.	1.9	27
7	Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. Human Molecular Genetics, 2020, 29, 1757-1771.	1.4	34
8	Comparative proteomic analysis highlights metabolic dysfunction in α-synucleinopathy. Npj Parkinson's Disease, 2020, 6, 40.	2.5	16
9	APOE4 is Associated with Differential Regional Vulnerability to Bioenergetic Deficits in Aged APOE Mice. Scientific Reports, 2020, 10, 4277.	1.6	34
10	Aberrant Development Corrected in Adult-Onset Huntington's Disease iPSC-Derived Neuronal Cultures via WNT Signaling Modulation. Stem Cell Reports, 2020, 14, 406-419.	2.3	45
11	A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules. Scientific Reports, 2020, 10, 954.	1.6	27
12	Zfp281 (ZBP-99) plays a functionally redundant role with Zfp148 (ZBP-89) during erythroid development. Blood Advances, 2019, 3, 2499-2511.	2.5	7
13	Early epigenomic and transcriptional changes reveal Elk-1 transcription factor as a therapeutic target in Huntington's disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24840-24851.	3.3	38
14	Characteristics of myeloproliferative neoplasms in patients exposed to ionizing radiation following the Chernobyl nuclear accident. American Journal of Hematology, 2019, 94, 62-73.	2.0	9
15	Shallow Sparsely-Connected Autoencoders for Gene Set Projection. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2019, 24, 374-385.	0.7	5
16	Discovering Altered Regulation and Signaling Through Network-based Integration of Transcriptomic, Epigenomic, and Proteomic Tumor Data. Methods in Molecular Biology, 2018, 1711, 13-26.	0.4	11
17	The Library of Integrated Network-Based Cellular Signatures NIH Program: System-Level Cataloging of Human Cells Response to Perturbations. Cell Systems, 2018, 6, 13-24.	2.9	327
18	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517

#	Article	IF	CITATIONS
19	Functional Genomics Approach Identifies Novel Signaling Regulators of TGFα Ectodomain Shedding. Molecular Cancer Research, 2018, 16, 147-161.	1.5	3
20	Synthesizing Signaling Pathways from Temporal Phosphoproteomic Data. Cell Reports, 2018, 24, 3607-3618.	2.9	30
21	Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2018, 34, 396-410.e8.	7.7	146
22	Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nature Communications, 2018, 9, 1899.	5.8	43
23	Turning omics data into therapeutic insights. Current Opinion in Pharmacology, 2018, 42, 95-101.	1.7	9
24	Shallow Sparsely-Connected Autoencoders for Gene Set Projection. , 2018, , .		4
25	Genome-Scale Networks Link Neurodegenerative Disease Genes to α-Synuclein through Specific Molecular Pathways. Cell Systems, 2017, 4, 157-170.e14.	2.9	102
26	Hyper- and hypo- nutrition studies of the hepatic transcriptome and epigenome suggest that PPARα regulates anaerobic glycolysis. Scientific Reports, 2017, 7, 174.	1.6	12
27	Huntington's Disease iPSC-Derived Brain Microvascular Endothelial Cells Reveal WNT-Mediated Angiogenic and Blood-Brain Barrier Deficits. Cell Reports, 2017, 19, 1365-1377.	2.9	199
28	Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements. Nature Communications, 2017, 8, 623.	5.8	26
29	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
30	Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. Cell Reports, 2017, 21, 3317-3328.	2.9	68
31	PCSF: An R-package for network-based interpretation of high-throughput data. PLoS Computational Biology, 2017, 13, e1005694.	1.5	35
32	A Fast Prize-Collecting Steiner Forest Algorithm for Functional Analyses in Biological Networks. Lecture Notes in Computer Science, 2017, , 263-276.	1.0	7
33	Network modeling of kinase inhibitor polypharmacology reveals pathways targeted in chemical screens. PLoS ONE, 2017, 12, e0185650.	1.1	3
34	DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with <i>In Silico</i> Analysis to Identify Novel Therapeutic Targets. Clinical Cancer Research, 2016, 22, 3903-3914.	3.2	54
35	Revealing disease-associated pathways by network integration of untargeted metabolomics. Nature Methods, 2016, 13, 770-776.	9.0	145
36	Chromatin Landscape and Epigenetic Signatures in Neurological Disorders. , 2016, , 519-537.		1

Chromatin Landscape and Epigenetic Signatures in Neurological Disorders. , 2016, , 519-537. 36

#	Article	IF	CITATIONS
37	Network Modeling Identifies Patient-specific Pathways in Glioblastoma. Scientific Reports, 2016, 6, 28668.	1.6	25
38	Cell freezing protocol suitable for ATAC-Seq on motor neurons derived from human induced pluripotent stem cells. Scientific Reports, 2016, 6, 25474.	1.6	49
39	MB-103DISCoVERing INNOVATIVE THERAPIES: COMBINING GENETICALLY ACCURATE DISEASE MODELS OF MEDULLOBLASTOMA WITH ADVANCED IN SILICO ANALYSIS TO IDENTIFY NOVEL THERAPEUTIC TARGETS. Neuro-Oncology, 2016, 18, iii120.3-iii120.	0.6	0
40	Pathway-based network modeling finds hidden genes in shRNA screen for regulators of acute lymphoblastic leukemia. Integrative Biology (United Kingdom), 2016, 8, 761-774.	0.6	5
41	Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements. Cell Reports, 2016, 14, 310-319.	2.9	86
42	Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2544-2549.	3.3	210
43	GATA Factor Switching during Erythroid Differentiation Is Facilitated By FBW7 Mediated Clearance of GATA2. Blood, 2016, 128, 1479-1479.	0.6	1
44	Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package. PLoS Computational Biology, 2016, 12, e1004879.	1.5	123
45	SAMNetWeb: identifying condition-specific networks linking signaling and transcription. Bioinformatics, 2015, 31, 1124-1126.	1.8	14
46	Sharing information to reconstruct patient-specific pathways in heterogeneous diseases. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2014, , 39-50.	0.7	4
47	Integrated network analyses for functional genomic studies in cancer. Seminars in Cancer Biology, 2013, 23, 213-218.	4.3	14
48	Analysis of InÂVitro Insulin-Resistance Models and Their Physiological Relevance to InÂVivo Diet-Induced Adipose Insulin Resistance. Cell Reports, 2013, 5, 259-270.	2.9	88
49	Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling. PLoS Computational Biology, 2013, 9, e1002887.	1.5	48
50	Targeting H3K4 trimethylation in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3027-36.	3.3	151
51	Simultaneous Reconstruction of Multiple Signaling Pathways via the Prize-Collecting Steiner Forest Problem. Journal of Computational Biology, 2013, 20, 124-136.	0.8	108
52	Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2354-2359.	3.3	152
53	SHARING INFORMATION TO RECONSTRUCT PATIENT-SPECIFIC PATHWAYS IN HETEROGENEOUS DISEASES. , 2013, , .		6
54	The Small Molecule Genistein Increases Hepcidin Expression by Activating Stat3 and Bone Morphogenic Protein Signaling. FASEB Journal, 2013, 27, 223.6.	0.2	0

#	Article	IF	CITATIONS
55	SteinerNet: a web server for integrating 'omic' data to discover hidden components of response pathways. Nucleic Acids Research, 2012, 40, W505-W509.	6.5	58
56	Swimming Upstream: Identifying Proteomic Signals that Drive Transcriptional Changes using the Interactome and Multiple "-Omics―Datasets. Methods in Cell Biology, 2012, 110, 57-80.	0.5	3
57	HSF1 Drives a Transcriptional Program Distinct from Heat Shock to Support Highly Malignant Human Cancers. Cell, 2012, 150, 549-562.	13.5	602
58	SAMNet: a network-based approach to integrate multi-dimensional high throughput datasets. Integrative Biology (United Kingdom), 2012, 4, 1415.	0.6	20
59	Direct Recruitment of Polycomb Repressive Complex 1 to Chromatin by Core Binding Transcription Factors. Molecular Cell, 2012, 45, 330-343.	4.5	188
60	Polyglutamine Expanded Huntingtin Dramatically Alters the Genome-Wide Binding of HSF1. Journal of Huntington's Disease, 2012, 1, 33-45.	0.9	40
61	Simultaneous Reconstruction of Multiple Signaling Pathways via the Prize-Collecting Steiner Forest Problem. Lecture Notes in Computer Science, 2012, , 287-301.	1.0	7
62	Poly-glutamine expanded huntingtin dramatically alters the genome wide binding of HSF1. Journal of Huntington's Disease, 2012, 1, 33-45.	0.9	25
63	ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Research, 2011, 39, W424-W429.	6.5	76
64	Genome-Wide Profiling of H3K56 Acetylation and Transcription Factor Binding Sites in Human Adipocytes. PLoS ONE, 2011, 6, e19778.	1.1	49
65	Unbiased, Genome-Wide <i>In Vivo</i> Mapping of Transcriptional Regulatory Elements Reveals Sex Differences in Chromatin Structure Associated with Sex-Specific Liver Gene Expression. Molecular and Cellular Biology, 2010, 30, 5531-5544.	1.1	98
66	A Quantitative Model of Transcriptional Regulation Reveals the Influence of Binding Location on Expression. PLoS Computational Biology, 2010, 6, e1000773.	1.5	67
67	Sequence Analysis of Chromatin Immunoprecipitation Data for Transcription Factors. Methods in Molecular Biology, 2010, 674, 179-193.	0.4	6
68	Role of Polycomb Repressive Complex 1 (PRC1) In Runx1 Mediated Gene Regulation. Blood, 2010, 116, 3863-3863.	0.6	0
69	Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nature Genetics, 2009, 41, 316-323.	9.4	266
70	Integrating Proteomic, Transcriptional, and Interactome Data Reveals Hidden Components of Signaling and Regulatory Networks. Science Signaling, 2009, 2, ra40.	1.6	161
71	WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches. Nucleic Acids Research, 2007, 35, W217-W220.	6.5	41
72	Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nature Genetics, 2007, 39, 730-732.	9.4	491

#	Article	IF	CITATIONS
73	High-resolution computational models of genome binding events. Nature Biotechnology, 2006, 24, 963-970.	9.4	82
74	An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 2006, 7, 113.	1.2	617
75	Practical Strategies for Discovering Regulatory DNA Sequence Motifs. PLoS Computational Biology, 2006, 2, e36.	1.5	137
76	A hypothesis-based approach for identifying the binding specificity of regulatory proteins from chromatin immunoprecipitation data. Bioinformatics, 2006, 22, 423-429.	1.8	73
77	Core transcriptional regulatory circuitry in human hepatocytes. Molecular Systems Biology, 2006, 2, 2006.0017.	3.2	179
78	TAMO: a flexible, object-oriented framework for analyzing transcriptional regulation using DNA-sequence motifs. Bioinformatics, 2005, 21, 3164-3165.	1.8	81
79	Transcriptional regulatory code of a eukaryotic genome. Nature, 2004, 431, 99-104.	13.7	1,969
80	Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science, 2002, 298, 799-804.	6.0	2,706
81	Hepatic Dysfunction Caused by Consumption of a High-Fat Diet. SSRN Electronic Journal, 0, , .	0.4	0