
Yuina Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2035547/publications.pdf Version: 2024-02-01

YIIINA ARE

#	Article	IF	CITATIONS
1	Porous microneedle-based wearable device for monitoring of transepidermal potential. Biomedical Engineering Advances, 2021, 1, 100004.	3.8	11
2	Electrical aspects of skin as a pathway to engineering skin devices. APL Bioengineering, 2021, 5, 041509.	6.2	12
3	The Development of the Technique for Physical Bonding between Gel/Silicone for the Hydrogel Salt Bridge Electrode. ECS Meeting Abstracts, 2020, MA2020-02, 3650-3650.	0.0	0
4	Biodegradable Porous Microneedle for Electric Skin Patch. ECS Meeting Abstracts, 2020, MA2020-02, 3288-3288.	0.0	0
5	Wearable Patch-Type Transepidermal Potential Measurement Device with Porous Microneedle. ECS Meeting Abstracts, 2020, MA2020-02, 3651-3651.	0.0	0
6	Hydrogel-Based Transparent Subdural Electrode with Salt Bridge As Interface to Brain Surface. ECS Meeting Abstracts, 2020, MA2020-02, 2793-2793.	0.0	0
7	Development of Permeable and Transparent Intracranial Electrode Embedded in Hydrogel Substrate. ECS Meeting Abstracts, 2020, MA2020-02, 3311-3311.	0.0	0
8	The Optimized Fabrication of a Polymeric Porous Microneedle for Effective Iontophoresis. ECS Meeting Abstracts, 2020, MA2020-02, 3649-3649.	0.0	0
9	Electrochemical Evaluation and Control of Skin Function Via Transepidermal Potential. ECS Meeting Abstracts, 2020, MA2020-02, 2820-2820.	0.0	0
10	Designed Electroosmotic Polymer for an Anti-Drying Contact Lens Device. ECS Meeting Abstracts, 2020, MA2020-02, 3300-3300.	0.0	0
11	Red light-promoted skin barrier recovery: Spatiotemporal evaluation by transepidermal potential. PLoS ONE, 2019, 14, e0219198.	2.5	7
12	Transepidermal Potential of the Stretched Skin. Journal of Biomechanical Engineering, 2019, 141, .	1.3	3
13	Electrical Evaluation and Control of Skin Function. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2018, 2018.29, 1B22.	0.0	0
14	Minimally-invasive transepidermal potentiometry with microneedle salt bridge for evaluation of the skin barrier repair. Journal of Dermatological Science, 2017, 86, e48.	1.9	0
15	Development of Electrical Device for Evaluation and Control of Skin Function. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2017, 2017.28, 2B12.	0.0	0
16	Minimally-invasive transepidermal potentiometry with microneedle salt bridge. Biomedical Microdevices, 2016, 18, 55.	2.8	10
17	Development of Diagnostic and Therapeutic Electrical Device for Skin Barrier Function. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2016, 2016.27, B113.	0.0	0
18	Highly stretchable cell-cultured hydrogel sheet. RSC Advances, 2015, 5, 66334-66338.	3.6	3

#	Article	IF	CITATIONS
19	Portable Micropatterns of Neuronal Cells Supported by Thin Hydrogel Films. ACS Biomaterials Science and Engineering, 2015, 1, 329-334.	5.2	22