
## Stefania Corti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/203541/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Cell-penetrating peptide-conjugated Morpholino rescues SMA in a symptomatic preclinical model.<br>Molecular Therapy, 2022, 30, 1288-1299.                                                                                                                 | 3.7 | 12        |
| 2  | Mitochondrial DNA homeostasis impairment and dopaminergic dysfunction: A trembling balance.<br>Ageing Research Reviews, 2022, 76, 101578.                                                                                                                 | 5.0 | 15        |
| 3  | Molecular analysis of SMARD1 patient-derived cells demonstrates that nonsense-mediated mRNA decay is impaired. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 908-910.                                                                      | 0.9 | 3         |
| 4  | Targeting PTB for Glia-to-Neuron Reprogramming In Vitro and In Vivo for Therapeutic Development in<br>Neurological Diseases. Biomedicines, 2022, 10, 399.                                                                                                 | 1.4 | 6         |
| 5  | Case Report: Thymidine Kinase 2 (TK2) Deficiency: A Novel Mutation Associated With Childhood-Onset<br>Mitochondrial Myopathy and Atypical Progression. Frontiers in Neurology, 2022, 13, 857279.                                                          | 1.1 | 0         |
| 6  | Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting<br>integrated microRNA profiling of iPSC-derived motor neurons and exosomes. Cellular and Molecular<br>Life Sciences, 2022, 79, 189.               | 2.4 | 12        |
| 7  | Stathmins and Motor Neuron Diseases: Pathophysiology and Therapeutic Targets. Biomedicines, 2022, 10, 711.                                                                                                                                                | 1.4 | 9         |
| 8  | Generation of two hiPSC lines (UMILi027-A and UMILi028-A) from early and late-onset Congenital<br>Central hypoventilation Syndrome (CCHS) patients carrying a polyalanine expansion mutation in the<br>PHOX2B gene. Stem Cell Research, 2022, 61, 102781. | 0.3 | 0         |
| 9  | Homozygous <i>SOD1</i> Variation L144S Produces a Severe Form of Amyotrophic Lateral Sclerosis in an Iranian Family. Neurology: Genetics, 2022, 8, e645.                                                                                                  | 0.9 | 6         |
| 10 | Clinical and genetic features of a cohort of patients with MFN2-related neuropathy. Scientific Reports, 2022, 12, 6181.                                                                                                                                   | 1.6 | 10        |
| 11 | Inhibition of myostatin and related signaling pathways for the treatment of muscle atrophy in motor neuron diseases. Cellular and Molecular Life Sciences, 2022, 79, .                                                                                    | 2.4 | 16        |
| 12 | New Insights into Cerebral Vessel Disease Landscapes at Single-Cell Resolution: Pathogenetic and Therapeutic Perspectives. Biomedicines, 2022, 10, 1693.                                                                                                  | 1.4 | 1         |
| 13 | Safety and efficacy of rt-PA treatment for acute stroke in pseudoxanthoma elasticum: the first report.<br>Journal of Thrombosis and Thrombolysis, 2021, 51, 176-179.                                                                                      | 1.0 | 2         |
| 14 | Extracellular vesicles and amyotrophic lateral sclerosis: from misfolded protein vehicles to promising clinical biomarkers. Cellular and Molecular Life Sciences, 2021, 78, 561-572.                                                                      | 2.4 | 42        |
| 15 | Expanding the genotypic and phenotypic spectrum of Betaâ€propeller poteinâ€associated<br>neurodegeneration. European Journal of Neurology, 2021, 28, e25-e27.                                                                                             | 1.7 | 0         |
| 16 | Management of patients with neuromuscular disorders at the time of the SARS-CoV-2 pandemic.<br>Journal of Neurology, 2021, 268, 1580-1591.                                                                                                                | 1.8 | 34        |
| 17 | A Novel Homozygous <scp><i>VPS11</i></scp> Variant May Cause Generalized Dystonia. Annals of Neurology, 2021, 89, 834-839.                                                                                                                                | 2.8 | 13        |
| 18 | Diagnostic and prognostic value of CSF neurofilaments in a cohort of patients with motor neuron<br>disease: A crossâ€sectional study, Journal of Cellular and Molecular Medicine, 2021, 25, 3765-3771                                                     | 1.6 | 10        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids.<br>International Journal of Molecular Sciences, 2021, 22, 2659.                                                                                        | 1.8 | 33        |
| 20 | Impairment of the neurotrophic signaling hub B-Raf contributes to motoneuron degeneration in<br>spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of<br>America, 2021, 118, e2007785118.            | 3.3 | 11        |
| 21 | Dysregulation of Muscle-Specific MicroRNAs as Common Pathogenic Feature Associated with Muscle<br>Atrophy in ALS, SMA and SBMA: Evidence from Animal Models and Human Patients. International<br>Journal of Molecular Sciences, 2021, 22, 5673. | 1.8 | 14        |
| 22 | Charcot–Marie–Tooth disease type 2F associated with biallelic <i>HSPB1</i> mutations. Annals of<br>Clinical and Translational Neurology, 2021, 8, 1158-1164.                                                                                    | 1.7 | 4         |
| 23 | Early Findings in Neonatal Cases of RYR1–Related Congenital Myopathies. Frontiers in Neurology, 2021,<br>12, 664618.                                                                                                                            | 1.1 | 3         |
| 24 | Sumoylation regulates the assembly and activity of the SMN complex. Nature Communications, 2021, 12, 5040.                                                                                                                                      | 5.8 | 8         |
| 25 | Impact of <scp>COVIDâ€19</scp> on the quality of life of patients with neuromuscular disorders in the <scp>L</scp> ombardy area, <scp>I</scp> taly. Muscle and Nerve, 2021, 64, 474-482.                                                        | 1.0 | 7         |
| 26 | Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA<br>Neurology, 2021, 78, 1236.                                                                                                               | 4.5 | 46        |
| 27 | Screening of LRP10 mutations in Parkinson's disease patients from Italy. Parkinsonism and Related Disorders, 2021, 89, 17-21.                                                                                                                   | 1.1 | 5         |
| 28 | Perspectives on hiPSC-Derived Muscle Cells as Drug Discovery Models for Muscular Dystrophies.<br>International Journal of Molecular Sciences, 2021, 22, 9630.                                                                                   | 1.8 | 3         |
| 29 | Sodium Levels Predict Disability at Discharge in Guillain-Barré Syndrome: A Retrospective Cohort<br>Study. Frontiers in Neurology, 2021, 12, 729252.                                                                                            | 1.1 | 2         |
| 30 | Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy<br>type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurology, The, 2021, 20,<br>832-841.                        | 4.9 | 112       |
| 31 | CACNA1S mutation associated with a case of juvenile-onset congenital myopathy. Journal of the Neurological Sciences, 2021, 431, 120047.                                                                                                         | 0.3 | 2         |
| 32 | Adeno-Associated Virus (AAV)-Mediated Gene Therapy for Duchenne Muscular Dystrophy: The Issue of<br>Transgene Persistence. Frontiers in Neurology, 2021, 12, 814174.                                                                            | 1.1 | 27        |
| 33 | Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.                                      | 9.4 | 223       |
| 34 | Molecular Approaches for the Treatment of Pompe Disease. Molecular Neurobiology, 2020, 57,<br>1259-1280.                                                                                                                                        | 1.9 | 17        |
| 35 | Back to the origins: Human brain organoids to investigate neurodegeneration. Brain Research, 2020, 1727, 146561.                                                                                                                                | 1.1 | 12        |
| 36 | Spinal muscular atrophy with respiratory distress type 1: Clinical phenotypes, molecular pathogenesis and therapeutic insights. Journal of Cellular and Molecular Medicine, 2020, 24, 1169-1178.                                                | 1.6 | 21        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | STIM1 R304W in mice causes subgingival hair growth and an increased fraction of trabecular bone.<br>Cell Calcium, 2020, 85, 102110.                                                               | 1.1 | 8         |
| 38 | Herpes Simplex virus type 2 myeloradiculitis with a pure motor presentation in a liver transplant recipient. Transplant Infectious Disease, 2020, 22, e13236.                                     | 0.7 | 2         |
| 39 | Expanding the clinical spectrum of the mitochondrial mutation A13084T in the <i>ND5</i> gene.<br>Neurology: Genetics, 2020, 6, e511.                                                              | 0.9 | 1         |
| 40 | Dystoniaâ€ataxia syndrome with permanent torsional nystagmus caused by ECHS1 deficiency. Annals of<br>Clinical and Translational Neurology, 2020, 7, 839-845.                                     | 1.7 | 10        |
| 41 | Hyperacute extensive spinal cord infarction and negative spine magnetic resonance imaging: a case report and review of the literature. Medicine (United States), 2020, 99, e22900.                | 0.4 | 3         |
| 42 | Insights into disease mechanisms and potential therapeutics for C9orf72-related amyotrophic lateral sclerosis/frontotemporal dementia. Ageing Research Reviews, 2020, 64, 101172.                 | 5.0 | 5         |
| 43 | Animal Models of CMT2A: State-of-art and Therapeutic Implications. Molecular Neurobiology, 2020, 57, 5121-5129.                                                                                   | 1.9 | 6         |
| 44 | Spinal muscular atrophy — challenges in the therapeutic era. Nature Reviews Neurology, 2020, 16,<br>655-656.                                                                                      | 4.9 | 1         |
| 45 | Systematic elucidation of neuron-astrocyte interaction in models of amyotrophic lateral sclerosis using multi-modal integrated bioinformatics workflow. Nature Communications, 2020, 11, 5579.    | 5.8 | 28        |
| 46 | A case report of late-onset cerebellar ataxia associated with a rare p.R342W TGM6 (SCA35) mutation.<br>BMC Neurology, 2020, 20, 408.                                                              | 0.8 | 3         |
| 47 | Silence superoxide dismutase 1 (SOD1): a promising therapeutic target for amyotrophic lateral sclerosis (ALS). Expert Opinion on Therapeutic Targets, 2020, 24, 295-310.                          | 1.5 | 49        |
| 48 | Nusinersen treatment and cerebrospinal fluid neurofilaments: An explorative study on Spinal<br>Muscular Atrophy type 3 patients. Journal of Cellular and Molecular Medicine, 2020, 24, 3034-3039. | 1.6 | 47        |
| 49 | Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathologica, 2020, 139, 837-853.                                                                                      | 3.9 | 28        |
| 50 | Current understanding of and emerging treatment options for spinal muscular atrophy with respiratory distress type 1 (SMARD1). Cellular and Molecular Life Sciences, 2020, 77, 3351-3367.         | 2.4 | 11        |
| 51 | Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives. Cellular and Molecular Life Sciences, 2020, 77, 4299-4313.   | 2.4 | 13        |
| 52 | Neural Stem Cell Transplantation for Neurodegenerative Diseases. International Journal of<br>Molecular Sciences, 2020, 21, 3103.                                                                  | 1.8 | 105       |
| 53 | miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Progress in Neurobiology, 2020, 190, 101803.                                                                    | 2.8 | 31        |
| 54 | Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease?.<br>Neurobiology of Disease, 2020, 140, 104870.                                                     | 2.1 | 35        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | SLC25A46 mutations in patients with Parkinson's Disease and optic atrophy. Parkinsonism and Related Disorders, 2020, 74, 1-5.                                                                                                            | 1.1 | 16        |
| 56 | R-Loops in Motor Neuron Diseases. Molecular Neurobiology, 2019, 56, 2579-2589.                                                                                                                                                           | 1.9 | 39        |
| 57 | Preconditioning and Cellular Engineering to Increase the Survival of Transplanted Neural Stem Cells<br>for Motor Neuron Disease Therapy. Molecular Neurobiology, 2019, 56, 3356-3367.                                                    | 1.9 | 36        |
| 58 | Loss of the nucleoporin Aladin in central nervous system and fibroblasts of Allgrove Syndrome.<br>Human Molecular Genetics, 2019, 28, 3921-3927.                                                                                         | 1.4 | 9         |
| 59 | Diagnostic and Prognostic Role of Blood and Cerebrospinal Fluid and Blood Neurofilaments in<br>Amyotrophic Lateral Sclerosis: A Review of the Literature. International Journal of Molecular<br>Sciences, 2019, 20, 4152.                | 1.8 | 47        |
| 60 | Ophthalmoplegia Due to Miller Fisher Syndrome in a Patient With Myasthenia Gravis. Frontiers in<br>Neurology, 2019, 10, 823.                                                                                                             | 1.1 | 4         |
| 61 | CSF transplantation of a specific iPSC-derived neural stem cell subpopulation ameliorates the disease phenotype in a mouse model of spinal muscular atrophy with respiratory distress type 1. Experimental Neurology, 2019, 321, 113041. | 2.0 | 8         |
| 62 | Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker<br>muscular dystrophies. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641983347.                                        | 1.5 | 32        |
| 63 | Disease Modeling and Therapeutic Strategies in CMT2A: State of the Art. Molecular Neurobiology, 2019, 56, 6460-6471.                                                                                                                     | 1.9 | 20        |
| 64 | Neurofascin (NFASC) gene mutation causes autosomal recessive ataxia with demyelinating neuropathy.<br>Parkinsonism and Related Disorders, 2019, 63, 66-72.                                                                               | 1.1 | 25        |
| 65 | Advances, Challenges, and Perspectives in Translational Stem Cell Therapy for Amyotrophic Lateral<br>Sclerosis. Molecular Neurobiology, 2019, 56, 6703-6715.                                                                             | 1.9 | 24        |
| 66 | Can Intestinal Pseudo-Obstruction Drive Recurrent Stroke-Like Episodes in Late-Onset MELAS<br>Syndrome? A Case Report and Review of the Literature. Frontiers in Neurology, 2019, 10, 38.                                                | 1.1 | 17        |
| 67 | iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug<br>Discovery. Cells, 2019, 8, 1438.                                                                                                             | 1.8 | 41        |
| 68 | Micro <scp>RNA</scp> s as regulators of cell death mechanisms in amyotrophic lateral sclerosis.<br>Journal of Cellular and Molecular Medicine, 2019, 23, 1647-1656.                                                                      | 1.6 | 24        |
| 69 | Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and motif analysis of<br>human motor neurons. Brain, 2019, 142, 276-294.                                                                                     | 3.7 | 31        |
| 70 | Study Design of STR1VE-EU, a Phase 3 Trial of AVXS-101 Gene-Replacement Therapy (GRT) in Patients With<br>Spinal Muscular Atrophy Type 1 (SMA1) in Europe. , 2019, 50, .                                                                 |     | 0         |
| 71 | mi <scp>RNA</scp> in spinal muscular atrophy pathogenesis and therapy. Journal of Cellular and<br>Molecular Medicine, 2018, 22, 755-767.                                                                                                 | 1.6 | 46        |
| 72 | In vitro models of multiple system atrophy from primary cells to induced pluripotent stem cells.<br>Journal of Cellular and Molecular Medicine, 2018, 22, 2536-2546.                                                                     | 1.6 | 11        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Pregnancy outcomes in women with spinal muscular atrophy: A review. Journal of the Neurological<br>Sciences, 2018, 388, 50-60.                                                                                 | 0.3 | 14        |
| 74 | Advances in spinal muscular atrophy therapeutics. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628561875450.                                                                                   | 1.5 | 69        |
| 75 | Reply: DGUOK recessive mutations in patients with CPEO, mitochondrial myopathy, parkinsonism and mtDNA deletions. Brain, 2018, 141, e4-e4.                                                                     | 3.7 | 3         |
| 76 | In Vivo Transient and Partial Cell Reprogramming to Pluripotency as a Therapeutic Tool for Neurodegenerative Diseases. Molecular Neurobiology, 2018, 55, 6850-6862.                                            | 1.9 | 12        |
| 77 | A de novo C19orf12 heterozygous mutation in a patient with MPAN. Parkinsonism and Related Disorders, 2018, 48, 109-111.                                                                                        | 1.1 | 15        |
| 78 | Time Is Motor Neuron: Therapeutic Window and Its Correlation with Pathogenetic Mechanisms in Spinal Muscular Atrophy. Molecular Neurobiology, 2018, 55, 6307-6318.                                             | 1.9 | 53        |
| 79 | Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic<br>Lateral Sclerosis. Molecular Neurobiology, 2018, 55, 2789-2813.                                                   | 1.9 | 32        |
| 80 | MicroRNA Metabolism and Dysregulation in Amyotrophic Lateral Sclerosis. Molecular Neurobiology, 2018, 55, 2617-2630.                                                                                           | 1.9 | 51        |
| 81 | Subclinical Leber's hereditary optic neuropathy with pediatric acute spinal cord onset: more than meets the eye. BMC Neurology, 2018, 18, 220.                                                                 | 0.8 | 3         |
| 82 | Central Nervous System Involvement in Common Variable Immunodeficiency: A Case of Acute<br>Unilateral Optic Neuritis in a 26-Year-Old Italian Patient. Frontiers in Neurology, 2018, 9, 1031.                  | 1.1 | 6         |
| 83 | Mitochondrial dysfunction in fibroblasts of Multiple System Atrophy. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2018, 1864, 3588-3597.                                                     | 1.8 | 32        |
| 84 | Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of<br>Multiple System Atrophy. Stem Cell Reports, 2018, 11, 1185-1198.                                                 | 2.3 | 46        |
| 85 | Stormorken Syndrome Caused by a p.R304W STIM1 Mutation: The First Italian Patient and a Review of the Literature. Frontiers in Neurology, 2018, 9, 859.                                                        | 1.1 | 20        |
| 86 | Bilateral Cavernous Carotid Aneurysms: Atypical Presentation of a Rare Cause of Mass Effect. A Case<br>Report and a Review of the Literature. Frontiers in Neurology, 2018, 9, 619.                            | 1.1 | 6         |
| 87 | Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage<br>disease type III mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3407-3417. | 1.8 | 4         |
| 88 | MicroRNA expression analysis identifies a subset of downregulated miRNAs in ALS motor neuron progenitors. Scientific Reports, 2018, 8, 10105.                                                                  | 1.6 | 53        |
| 89 | Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in<br>Spinal Muscular Atrophy. International Journal of Molecular Sciences, 2018, 19, 167.                          | 1.8 | 8         |
| 90 | Purkinje cell COX deficiency and mtDNA depletion in an animal model of spinocerebellar ataxia type 1.<br>Journal of Neuroscience Research, 2018, 96, 1576-1585.                                                | 1.3 | 12        |

| #   | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The italian limb girdle muscular dystrophy registry: Relative frequency, clinical features, and<br>differential diagnosis. Muscle and Nerve, 2017, 55, 55-68.                                                                                    | 1.0 | 86        |
| 92  | Cellular Therapy for Spinal Muscular Atrophy. , 2017, , 251-275.                                                                                                                                                                                 |     | 0         |
| 93  | Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in<br>Brown–Vialetto disease that is partially rescued by riboflavin. Scientific Reports, 2017, 7, 46271.                                        | 1.6 | 22        |
| 94  | Mutations in TMEM230 are rare in autosomal dominant Parkinson's disease. Parkinsonism and Related<br>Disorders, 2017, 39, 87-88.                                                                                                                 | 1.1 | 11        |
| 95  | MicroRNA-Directed Neuronal Reprogramming as a Therapeutic Strategy for Neurological Diseases.<br>Molecular Neurobiology, 2017, 55, 4428-4436.                                                                                                    | 1.9 | 10        |
| 96  | Development of Therapeutics for C9ORF72 ALS/FTD-Related Disorders. Molecular Neurobiology, 2017, 54, 4466-4476.                                                                                                                                  | 1.9 | 30        |
| 97  | Morpholino-mediated SOD1 reduction ameliorates an amyotrophic lateral sclerosis disease phenotype.<br>Scientific Reports, 2016, 6, 21301.                                                                                                        | 1.6 | 26        |
| 98  | Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Scientific Reports, 2016, 6, 25960.                                                                                                                          | 1.6 | 80        |
| 99  | New Mutations in NEB Gene Discovered by Targeted Next-Generation Sequencing in Nemaline Myopathy<br>Italian Patients. Journal of Molecular Neuroscience, 2016, 59, 351-359.                                                                      | 1.1 | 17        |
| 100 | Mutational analysis of COQ2 in patients with MSA in Italy. Neurobiology of Aging, 2016, 45, 213.e1-213.e2.                                                                                                                                       | 1.5 | 25        |
| 101 | Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human<br>Charcot-Marie-Tooth 2A motor neurons. Human Molecular Genetics, 2016, 25, 4266-4281.                                                                | 1.4 | 41        |
| 102 | iPSC-derived LewisX+CXCR4+β1-integrin+ neural stem cells improve the amyotrophic lateral sclerosis<br>phenotype by preserving motor neurons and muscle innervation in human and rodent models. Human<br>Molecular Genetics, 2016, 25, 3152-3163. | 1.4 | 27        |
| 103 | Clinical Pregenetic Screening for Stroke Monogenic Diseases. Stroke, 2016, 47, 1702-1709.                                                                                                                                                        | 1.0 | 34        |
| 104 | Autophagy in motor neuron disease: Key pathogenetic mechanisms and therapeutic targets. Molecular<br>and Cellular Neurosciences, 2016, 72, 84-90.                                                                                                | 1.0 | 43        |
| 105 | Is spinal muscular atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?. Cellular and Molecular Life Sciences, 2016, 73, 1003-1020.                                                                           | 2.4 | 49        |
| 106 | Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo<br>Reprogramming. Molecular Neurobiology, 2016, 53, 2124-2131.                                                                                       | 1.9 | 11        |
| 107 | Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1. Journal of Cellular and Molecular Medicine, 2015, 19, 2058-2066.                                                       | 1.6 | 14        |
| 108 | Spinal muscular atrophy phenotype is ameliorated in human motor neurons by SMN increase via<br>different novel RNA therapeutic approaches. Scientific Reports, 2015, 5, 11746.                                                                   | 1.6 | 37        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | ISPD mutations account for a small proportion of Italian Limb Girdle Muscular Dystrophy cases. BMC<br>Neurology, 2015, 15, 172.                                                                                        | 0.8 | 10        |
| 110 | SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis.<br>Frontiers in Cellular Neuroscience, 2015, 9, 336.                                                                      | 1.8 | 111       |
| 111 | Spinal muscular atrophy—recent therapeutic advances for an old challenge. Nature Reviews<br>Neurology, 2015, 11, 351-359.                                                                                              | 4.9 | 119       |
| 112 | Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience, 2015, 291, 216-229.                                                                    | 1.1 | 62        |
| 113 | Gene therapy rescues disease phenotype in a spinal muscular atrophy with respiratory distress type 1 (SMARD1) mouse model. Science Advances, 2015, 1, e1500078.                                                        | 4.7 | 33        |
| 114 | Therapeutic Development in Amyotrophic Lateral Sclerosis. Clinical Therapeutics, 2015, 37, 668-680.                                                                                                                    | 1.1 | 71        |
| 115 | Novel Splice-Site Mutation in SMN1 Associated with a very Severe SMA-I Phenotype. Journal of Molecular Neuroscience, 2015, 56, 212-215.                                                                                | 1.1 | 11        |
| 116 | Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy. JAMA<br>Neurology, 2015, 72, 666.                                                                                                  | 4.5 | 106       |
| 117 | MFN2-related neuropathies: Clinical features, molecular pathogenesis and therapeutic perspectives.<br>Journal of the Neurological Sciences, 2015, 356, 7-18.                                                           | 0.3 | 112       |
| 118 | A novel homozygous PLA2G6 mutation causes dystonia-parkinsonism. Parkinsonism and Related Disorders, 2015, 21, 337-339.                                                                                                | 1.1 | 22        |
| 119 | TUBA4A gene analysis in sporadic amyotrophic lateral sclerosis: identification of novel mutations.<br>Journal of Neurology, 2015, 262, 1376-1378.                                                                      | 1.8 | 44        |
| 120 | Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery. Expert Opinion on Drug Discovery, 2015, 10, 615-629.                                           | 2.5 | 49        |
| 121 | CHCHD10mutations in Italian patients with sporadic amyotrophic lateral sclerosis: Figure 1. Brain, 2015, 138, e372-e372.                                                                                               | 3.7 | 59        |
| 122 | Pluripotent stem cell-based models of spinal muscular atrophy. Molecular and Cellular<br>Neurosciences, 2015, 64, 44-50.                                                                                               | 1.0 | 28        |
| 123 | Therapeutic applications of the cell-penetrating HIV-1 Tat peptide. Drug Discovery Today, 2015, 20, 76-85.                                                                                                             | 3.2 | 173       |
| 124 | iPSC-Based Models to Unravel Key Pathogenetic Processes Underlying Motor Neuron Disease<br>Development. Journal of Clinical Medicine, 2014, 3, 1124-1145.                                                              | 1.0 | 6         |
| 125 | Lower motor neuron disease with respiratory failure caused by a novel <i>MAPT</i> mutation.<br>Neurology, 2014, 82, 1990-1998.                                                                                         | 1.5 | 21        |
| 126 | Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively<br>improves the phenotype of an amyotrophic lateral sclerosis model. Human Molecular Genetics, 2014,<br>23, 342-354. | 1.4 | 97        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Analysis of the KIFAP3 gene in amyotrophic lateral sclerosis: a multicenter survival study.<br>Neurobiology of Aging, 2014, 35, 2420.e13-2420.e14.                                             | 1.5 | 16        |
| 128 | In vitro neurogenesis: development and functional implications of iPSC technology. Cellular and Molecular Life Sciences, 2014, 71, 1623-1639.                                                  | 2.4 | 39        |
| 129 | Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cellular and Molecular Life Sciences, 2014, 71, 3257-3268.        | 2.4 | 32        |
| 130 | Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cellular and<br>Molecular Life Sciences, 2014, 71, 999-1015.                                                    | 2.4 | 89        |
| 131 | Effect of Combined Systemic and Local Morpholino Treatment on the Spinal Muscular Atrophy Δ7<br>Mouse Model Phenotype. Clinical Therapeutics, 2014, 36, 340-356.e5.                            | 1.1 | 44        |
| 132 | Molecular, genetic and stem cellâ€mediated therapeutic strategies for spinal muscular atrophy<br>( <scp>SMA</scp> ). Journal of Cellular and Molecular Medicine, 2014, 18, 187-196.            | 1.6 | 20        |
| 133 | Antisense Oligonucleotide Therapy for the Treatment of C9ORF72 ALS/FTD Diseases. Molecular<br>Neurobiology, 2014, 50, 721-732.                                                                 | 1.9 | 48        |
| 134 | Molecular Therapeutic Strategies for Spinal Muscular Atrophies: Current and Future Clinical Trials.<br>Clinical Therapeutics, 2014, 36, 128-140.                                               | 1.1 | 74        |
| 135 | A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis. Human Molecular Genetics, 2014, 23, 2220-2231.             | 1.4 | 123       |
| 136 | Induced neural stem cells: Methods of reprogramming and potential therapeutic applications.<br>Progress in Neurobiology, 2014, 114, 15-24.                                                     | 2.8 | 39        |
| 137 | The wide spectrum of clinical phenotypes of spinal muscular atrophy with respiratory distress type 1:<br>A systematic review. Journal of the Neurological Sciences, 2014, 346, 35-42.          | 0.3 | 30        |
| 138 | Exome-wide Rare Variant Analysis Identifies TUBA4A Mutations Associated with Familial ALS. Neuron, 2014, 84, 324-331.                                                                          | 3.8 | 308       |
| 139 | Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives. Stem Cell Research and Therapy, 2014, 5, 87.               | 2.4 | 52        |
| 140 | Glycogen storage disease type III: A novel Agl knockout mouse model. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2014, 1842, 2318-2328.                                     | 1.8 | 28        |
| 141 | iPSC-Derived Neural Stem Cells Act via Kinase Inhibition to Exert Neuroprotective Effects in Spinal<br>Muscular Atrophy with Respiratory DistressÂType 1. Stem Cell Reports, 2014, 3, 297-311. | 2.3 | 34        |
| 142 | A novel CCM1mutation associated with multiple cerebral and vertebral cavernous malformations.<br>BMC Neurology, 2014, 14, 158.                                                                 | 0.8 | 12        |
| 143 | In vitro analysis of splice site mutations in the CLCN1 gene using the minigene assay. Molecular<br>Biology Reports, 2014, 41, 2865-2874.                                                      | 1.0 | 8         |
| 144 | Ongoing therapeutic trials and outcome measures for Duchenne muscular dystrophy. Cellular and<br>Molecular Life Sciences, 2013, 70, 4585-4602.                                                 | 2.4 | 53        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | POLG1 mutations and stroke like episodes: a distinct clinical entity rather than an atypical MELAS syndrome. BMC Neurology, 2013, 13, 8.                                                                                           | 0.8 | 26        |
| 146 | Direct Reprogramming of Adult Somatic Cells into other Lineages: Past Evidence and Future<br>Perspectives. Cell Transplantation, 2013, 22, 921-944.                                                                                | 1.2 | 20        |
| 147 | Mutations in DNA2 Link Progressive Myopathy to Mitochondrial DNA Instability. American Journal of<br>Human Genetics, 2013, 92, 293-300.                                                                                            | 2.6 | 115       |
| 148 | Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia.<br>Neurobiology of Aging, 2013, 34, 1517.e9-1517.e10.                                                                         | 1.5 | 35        |
| 149 | Analysis of hnRNPA1, A2/B1, and A3 genes in patients with amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 2695.e11-2695.e12.                                                                                       | 1.5 | 30        |
| 150 | Mitochondrial Fusion Proteins and Human Diseases. Neurology Research International, 2013, 2013, 1-11.                                                                                                                              | 0.5 | 85        |
| 151 | <i>Ubiquilin 2</i> mutations in Italian patients with amyotrophic lateral sclerosis and frontotemporal dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 183-187.                                             | 0.9 | 74        |
| 152 | Riboflavin transporter 3 involvement in infantile Brown-Vialetto-Van Laere disease: two novel mutations. Journal of Medical Genetics, 2013, 50, 104-107.                                                                           | 1.5 | 31        |
| 153 | Growing Evidence about the Relationship between Vessel Dissection and Scuba Diving. Case Reports in Neurology, 2013, 5, 155-161.                                                                                                   | 0.3 | 7         |
| 154 | The novel mitochondrial tRNAAsn gene mutation m.5709T>C produces ophthalmoparesis and respiratory impairment. European Journal of Human Genetics, 2012, 20, 357-360.                                                               | 1.4 | 4         |
| 155 | Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions. Brain, 2012, 135, 3404-3415.                                                                                       | 3.7 | 81        |
| 156 | Genetic Correction of Human Induced Pluripotent Stem Cells from Patients with Spinal Muscular Atrophy. Science Translational Medicine, 2012, 4, 165ra162.                                                                          | 5.8 | 180       |
| 157 | C9ORF72 repeat expansion in a large Italian ALS cohort: evidence of a founder effect. Neurobiology of Aging, 2012, 33, 2528.e7-2528.e14.                                                                                           | 1.5 | 74        |
| 158 | Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an <i>in<br/>vitro</i> model and for therapy of muscular dystrophies. Journal of Cellular and Molecular<br>Medicine, 2012, 16, 1353-1364. | 1.6 | 61        |
| 159 | Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscular Disorders, 2012, 22, 934-943.                                                                | 0.3 | 53        |
| 160 | Optic atrophy plus phenotype due to mutations in the OPA1 gene: Two more Italian families. Journal of the Neurological Sciences, 2012, 315, 146-149.                                                                               | 0.3 | 21        |
| 161 | Myotonia congenita: Novel mutations in CLCN1 gene and functional characterizations in Italian patients. Journal of the Neurological Sciences, 2012, 318, 65-71.                                                                    | 0.3 | 22        |
| 162 | Research advances in gene therapy approaches for the treatment of amyotrophic lateral sclerosis.<br>Cellular and Molecular Life Sciences, 2012, 69, 1641-1650.                                                                     | 2.4 | 19        |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Direct reprogramming of human astrocytes into neural stem cells and neurons. Experimental Cell<br>Research, 2012, 318, 1528-1541.                                                           | 1.2 | 143       |
| 164 | New molecular findings in congenital myopathies due to selenoprotein N gene mutations. Journal of the Neurological Sciences, 2011, 300, 107-113.                                            | 0.3 | 23        |
| 165 | Intracerebral haemorrhage, a possible presentation in Churg-Strauss syndrome: Case report and review of the literature. Journal of the Neurological Sciences, 2011, 301, 107-111.           | 0.3 | 19        |
| 166 | Two novel mutations in PEO1 (Twinkle) gene associated with chronic external ophthalmoplegia.<br>Journal of the Neurological Sciences, 2011, 308, 173-176.                                   | 0.3 | 7         |
| 167 | Unusual adult-onset Leigh syndrome presentation due to the mitochondrial m.9176T>C mutation.<br>Biochemical and Biophysical Research Communications, 2011, 412, 245-248.                    | 1.0 | 19        |
| 168 | ALS genetic modifiers that increase survival of SOD1 mice and are suitable for therapeutic development. Progress in Neurobiology, 2011, 95, 133-148.                                        | 2.8 | 26        |
| 169 | No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort. Neurobiology of Aging, 2011, 32, 1157-1158.                                     | 1.5 | 18        |
| 170 | Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Experimental Neurology, 2011, 229, 214-225.                                        | 2.0 | 51        |
| 171 | Anti-MuSK-Positive Myasthenia Gravis in a Patient with Parkinsonism and Cognitive Impairment.<br>Neurology Research International, 2011, 2011, 1-4.                                         | 0.5 | 8         |
| 172 | Growth factors in ischemic stroke. Journal of Cellular and Molecular Medicine, 2011, 15, 1645-1687.                                                                                         | 1.6 | 81        |
| 173 | Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. Journal of Neurology, 2011, 258, 1610-1623.                                            | 1.8 | 134       |
| 174 | Clinical and molecular characterization of a cohort of patients with novel nucleotide alterations of the Dystrophin gene detected by direct sequencing. BMC Medical Genetics, 2011, 12, 37. | 2.1 | 32        |
| 175 | Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms. Annals of Neurosciences, 2011, 18, 156-7.                                          | 0.9 | 3         |
| 176 | Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis.<br>Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 1239-1243.                 | 0.9 | 86        |
| 177 | Mitochondrial Respiratory Chain Dysfunction in Muscle From Patients With Amyotrophic Lateral Sclerosis. Archives of Neurology, 2010, 67, 849-54.                                            | 4.9 | 122       |
| 178 | Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells.<br>Cellular and Molecular Life Sciences, 2010, 67, 3837-3847.                                   | 2.4 | 71        |
| 179 | Clinical Studies in Stem Cells Transplantation for Stroke: A Review. Current Vascular Pharmacology, 2010, 8, 29-34.                                                                         | 0.8 | 19        |
| 180 | Systemic transplantation of c-kit+ cells exerts a therapeutic effect in a model of amyotrophic lateral sclerosis. Human Molecular Genetics, 2010, 19, 3782-3796.                            | 1.4 | 66        |

| #   | Article                                                                                                                                                                                        | IF                 | CITATIONS     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 181 | A Cortically Blind Patient With Preserved Visual Imagery. Cognitive and Behavioral Neurology, 2010, 23, 44-48.                                                                                 | 0.5                | 21            |
| 182 | <i>RAS</i> Mutations Contribute to Evolution of Chronic Myelomonocytic Leukemia to the Proliferative Variant. Clinical Cancer Research, 2010, 16, 2246-2256.                                   | 3.2                | 123           |
| 183 | Association study between XRCC1 gene polymorphisms and sporadic amyotrophic lateral sclerosis.<br>Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 122-124.           | 2.3                | 14            |
| 184 | Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice.<br>Brain, 2010, 133, 465-481.                                                                 | 3.7                | 98            |
| 185 | The m.12316G>A mutation in the mitochondrial tRNALeu(CUN) gene is associated with mitochondrial myopathy and respiratory impairment. Journal of the Neurological Sciences, 2010, 292, 107-110. | 0.3                | 1             |
| 186 | Motoneuron Transplantation Rescues the Phenotype of SMARD1 (Spinal Muscular Atrophy with) Tj ETQq0 0 0 rgE                                                                                     | 3T_/Overloo<br>1.7 | ck 10 Tf 50 5 |
| 187 | Stem cell therapy in stroke. Cellular and Molecular Life Sciences, 2009, 66, 757-772.                                                                                                          | 2.4                | 119           |
| 188 | Aberrant splicing due to a silent nucleotide change in <i>CCM2 </i> gene in a family with cerebral cavernous malformation. Clinical Genetics, 2009, 75, 494-497.                               | 1.0                | 7             |
| 189 | <i>TARDBP</i> (TDPâ€43) sequence analysis in patients with familial and sporadic ALS: identification of                                                                                        | 1.7                | 93            |

| 189 | two novel mutations. Európean Journal of Neurology, 2009, 16, 727-732.                                                                                                                                                      | 1.7 | 93  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 190 | The Mitochondrial Disulfide Relay System Protein GFER Is Mutated in Autosomal-Recessive Myopathy<br>with Cataract and Combined Respiratory-Chain Deficiency. American Journal of Human Genetics, 2009,<br>84, 594-604.      | 2.6 | 121 |
| 191 | ls erythropoietin gene a modifier factor in amyotrophic lateral sclerosis?. Neurobiology of Aging, 2009, 30, 842-844.                                                                                                       | 1.5 | 3   |
| 192 | Inclusion body myopathy and frontotemporal dementia caused by a novel VCP mutation. Neurobiology of Aging, 2009, 30, 752-758.                                                                                               | 1.5 | 63  |
| 193 | Amyotrophic lateral sclerosis linked to a novel SOD1 mutation with muscle mitochondrial dysfunction. Journal of the Neurological Sciences, 2009, 276, 170-174.                                                              | 0.3 | 35  |
| 194 | Mitochondrial DNA G8363A mutation in the tRNALys gene: Clinical, biochemical and pathological study. Journal of the Neurological Sciences, 2009, 281, 85-92.                                                                | 0.3 | 40  |
| 195 | Aphasic and visual aura with increased vasogenic leakage: An atypical migrainosus status. Journal of the Neurological Sciences, 2009, 285, 227-229.                                                                         | 0.3 | 8   |
| 196 | Effect of steroid treatment in cerebellar ataxia associated with anti-glutamic acid decarboxylase antibodies. Journal of Neurology, Neurosurgery and Psychiatry, 2009, 80, 95-96.                                           | 0.9 | 17  |
| 197 | Clinical features and new molecular findings in Carnitine Palmitoyltransferase II (CPT II) deficiency.<br>Journal of the Neurological Sciences, 2008, 266, 97-103.                                                          | 0.3 | 46  |
| 198 | Colocalization of ribonuclear inclusions with muscle blind like-proteins in a family with myotonic<br>dystrophy type 2 associated with a short CCTG expansion. Journal of the Neurological Sciences, 2008,<br>275, 159-163. | 0.3 | 12  |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Absence of angiogenic genes modification in Italian ALS patients. Neurobiology of Aging, 2008, 29, 314-316.                                                                                    | 1.5 | 41        |
| 200 | DPP6 gene variability confers increased risk of developing sporadic amyotrophic lateral sclerosis in Italian patients. Journal of Neurology, Neurosurgery and Psychiatry, 2008, 79, 1085-1085. | 0.9 | 20        |
| 201 | Mutated mitofusin 2 presents with intrafamilial variability and brain mitochondrial dysfunction.<br>Neurology, 2008, 71, 1959-1966.                                                            | 1.5 | 80        |
| 202 | Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. Journal of Clinical Investigation, 2008, 118, 3316-3330.                            | 3.9 | 119       |
| 203 | Neural stem cells LewisX + CXCR4 + modify disease progression in an amyotrophic lateral sclerosis model. Brain, 2007, 130, 1289-1305.                                                          | 3.7 | 127       |
| 204 | Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Experimental Neurology, 2007, 205, 547-562.                                              | 2.0 | 104       |
| 205 | Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice. Annals of Neurology, 2007, 62, 81-92.                                                                | 2.8 | 47        |
| 206 | SPG11: a consistent clinical phenotype in a family with homozygous Spatacsin truncating mutation.<br>Neurogenetics, 2007, 8, 301-305.                                                          | 0.7 | 38        |
| 207 | Identification of a Primitive Brain-Derived Neural Stem Cell Population Based on Aldehyde<br>Dehydrogenase Activity. Stem Cells, 2006, 24, 975-985.                                            | 1.4 | 240       |
| 208 | Coexistence of CMT-2D and distal SMA-V phenotypes in an Italian family with a GARS gene mutation.<br>Neurology, 2006, 66, 752-754.                                                             | 1.5 | 62        |
| 209 | Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Human Molecular Genetics, 2006, 15, 167-187.           | 1.4 | 90        |
| 210 | Multipotentiality, homing properties, and pyramidal neurogenesis of CNSâ€derived LeX(sseaâ€1) + /CXCR4 +<br>stem cells. FASEB Journal, 2005, 19, 1860-1862.                                    | 0.2 | 65        |
| 211 | Nuclear reprogramming and adult stem cell potential. Histology and Histopathology, 2005, 20, 977-86.                                                                                           | 0.5 | 6         |
| 212 | Improvement of Combined FISH and Immunofluorescence to Trace the Fate of Somatic Stem Cells after Transplantation. Journal of Histochemistry and Cytochemistry, 2004, 52, 1333-1339.           | 1.3 | 16        |
| 213 | Somatic stem cell research for neural repair: current evidence and emerging perspectives. Journal of Cellular and Molecular Medicine, 2004, 8, 329-337.                                        | 1.6 | 15        |
| 214 | Long-term neuropsychological deficits after cerebellar infarctions in two young adult twins.<br>Neuropsychologia, 2004, 42, 536-545.                                                           | 0.7 | 62        |
| 215 | Developmental and tissue-specific regulation of a novel dysferlin isoform. Muscle and Nerve, 2004, 30, 366-374.                                                                                | 1.0 | 16        |
| 216 | Skeletal muscle differentiation potential of human adult bone marrow cells. Experimental Cell<br>Research, 2004, 295, 66-78.                                                                   | 1.2 | 54        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain, 2004, 127, 2518-2532.                                           | 3.7 | 187       |
| 218 | Improvement of Combined FISH and Immunofluorescence to Trace the Fate of Somatic Stem Cells after Transplantation. Journal of Histochemistry and Cytochemistry, 2004, 52, 1333-1339.                        | 1.3 | 4         |
| 219 | Neuronal Differentiation of Murine Bone Marrow Thy-1- and Sca-1-Positive Cells. Journal of<br>Hematotherapy and Stem Cell Research, 2003, 12, 727-734.                                                      | 1.8 | 41        |
| 220 | A <i>CAV3</i> microdeletion differentially affects skeletal muscle and myocardium. Neurology, 2003, 61, 1513-1519.                                                                                          | 1.5 | 42        |
| 221 | Neuronal Generation from Somatic Stem Cells: Current Knowledge and Perspectives on the Treatment of Acquired and Degenerative Central Nervous System Disorders. Current Gene Therapy, 2003, 3, 247-272.     | 0.9 | 36        |
| 222 | A Subpopulation of Murine Bone Marrow Cells Fully Differentiates along the Myogenic Pathway and<br>Participates in Muscle Repair in the mdx Dystrophic Mouse. Experimental Cell Research, 2002, 277, 74-85. | 1.2 | 70        |
| 223 | Modulated Generation of Neuronal Cells from Bone Marrow by Expansion and Mobilization of<br>Circulating Stem Cells with in Vivo Cytokine Treatment. Experimental Neurology, 2002, 177, 443-452.             | 2.0 | 71        |
| 224 | Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. Journal of Neuroscience Research, 2002, 70, 721-733.                                      | 1.3 | 86        |
| 225 | Chemotactic Factors Enhance Myogenic Cell Migration across an Endothelial Monolayer.<br>Experimental Cell Research, 2001, 268, 36-44.                                                                       | 1.2 | 52        |
| 226 | Biodistribution studies of 99m Tc-labeled myoblasts in a murine model of muscular dystrophy. Nuclear<br>Medicine and Biology, 2001, 28, 935-940.                                                            | 0.3 | 9         |
| 227 | T-antigen regulated expression reduces apoptosis of Tag-transformed human myoblasts. Cellular and<br>Molecular Life Sciences, 2001, 58, 135-140.                                                            | 2.4 | 4         |
| 228 | A novel splice site mutation (3157+1G>T) in the dystrophin gene causing total exon skipping and DMD phenotype. Human Mutation, 2001, 17, 239-239.                                                           | 1.1 | 5         |
| 229 | In Vitro and In Vivo Tetracycline-Controlled Myogenic Conversion of NIH-3T3 Cells: Evidence of<br>Programmed Cell Death after Muscle Cell Transplantation. Cell Transplantation, 2001, 10, 209-221.         | 1.2 | 9         |
| 230 | In vitro and in vivo tetracycline-controlled myogenic conversion of NIH-3T3 cells: evidence of programmed cell death after muscle cell transplantation. Cell Transplantation, 2001, 10, 209-21.             | 1.2 | 4         |
| 231 | Transplacental injection of somite-derived cells in mdx mouse embryos for the correction of dystrophin deficiency. Human Molecular Genetics, 2000, 9, 1843-1852.                                            | 1.4 | 11        |
| 232 | Extracorporeal Circulation as a New Experimental Pathway for Myoblast Implantation in mdx Mice.<br>Cell Transplantation, 1999, 8, 247-258.                                                                  | 1.2 | 10        |
| 233 | Case Report: Rare Homozygous RNASEH1 Mutations Associated With Adult-Onset Mitochondrial Encephalomyopathy and Multiple Mitochondrial DNA Deletions. Frontiers in Genetics, 0, 13, .                        | 1.1 | 2         |