Nicholas M Fountain-Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2035396/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parasites as conservation tools. Conservation Biology, 2022, 36, .	2.4	24
2	Anemia or other comorbidities? using machine learning to reveal deeper insights into the drivers of acute coronary syndromes in hospital admitted patients. PLoS ONE, 2022, 17, e0262997.	1.1	5
3	Hunting alters viral transmission and evolution in a large carnivore. Nature Ecology and Evolution, 2022, 6, 174-182.	3.4	5
4	Comparative phylodynamics reveals the evolutionary history of SARS-CoV-2 emerging variants in the Arabian Peninsula. Virus Evolution, 2022, 8, .	2.2	3
5	Group density, disease, and season shape territory size and overlap of social carnivores. Journal of Animal Ecology, 2021, 90, 87-101.	1.3	12
6	Host relatedness and landscape connectivity shape pathogen spread in the puma, a large secretive carnivore. Communications Biology, 2021, 4, 12.	2.0	20
7	Interspecies bacterial communication produces a delicate balance between Vibrio cholerae and the chironomid egg mass microbiome. Molecular Ecology, 2021, 30, 1571-1573.	2.0	0
8	Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (Triatominae). PLoS Neglected Tropical Diseases, 2021, 15, e0008822.	1.3	4
9	Environment, vector, or host? Using machine learning to untangle the mechanisms driving arbovirus outbreaks. Ecological Applications, 2021, 31, e02407.	1.8	4
10	MrIML: Multiâ€response interpretable machine learning to model genomic landscapes. Molecular Ecology Resources, 2021, 21, 2766-2781.	2.2	12
11	Cross-sectional association of Toxoplasma gondii exposure with BMI and diet in US adults. PLoS Neglected Tropical Diseases, 2021, 15, e0009825.	1.3	1
12	Machine learning in molecular ecology. Molecular Ecology Resources, 2021, 21, 2589-2597.	2.2	8
13	Strong trait correlation and phylogenetic signal in North American ground beetle (Carabidae) morphology. Ecosphere, 2021, 12, .	1.0	3
14	Microbial associations and spatial proximity predict North American moose (<i>Alces alces</i>) gastrointestinal community composition. Journal of Animal Ecology, 2020, 89, 817-828.	1.3	16
15	Emerging phylogenetic structure of the SARS-CoV-2 pandemic. Virus Evolution, 2020, 6, veaa082.	2.2	21
16	Global emergence and evolutionary dynamics of bluetongue virus. Scientific Reports, 2020, 10, 21677.	1.6	26
17	Mainstreaming Microbes across Biomes. BioScience, 2020, 70, 589-596.	2.2	11
18	Frequent cross-species transmissions of foamy virus between domestic and wild felids. Virus Evolution, 2020, 6, vez058.	2.2	17

#	Article	IF	CITATIONS
19	Does the virus cross the road? Viral phylogeographic patterns among bobcat populations reflect a history of urban development. Evolutionary Applications, 2020, 13, 1806-1817.	1.5	7
20	Crossâ€species transmission and evolutionary dynamics of canine distemper virus during a spillover in African lions of Serengeti National Park. Molecular Ecology, 2020, 29, 4308-4321.	2.0	18
21	Using host traits to predict reservoir host species of rabies virus. PLoS Neglected Tropical Diseases, 2020, 14, e0008940.	1.3	29
22	How to make more from exposure data? An integrated machine learning pipeline to predict pathogen exposure. Journal of Animal Ecology, 2019, 88, 1447-1461.	1.3	33
23	Novel smacoviruses identified in the faeces of two wild felids: North American bobcat and African lion. Archives of Virology, 2019, 164, 2395-2399.	0.9	5
24	Gut microbiota and their putative metabolic functions in fragmented Bengal tiger population of Nepal. PLoS ONE, 2019, 14, e0221868.	1.1	13
25	Urbanization impacts apex predator gene flow but not genetic diversity across an urbanâ€rural divide. Molecular Ecology, 2019, 28, 4926-4940.	2.0	23
26	The Expectations and Challenges of Wildlife Disease Research in the Era of Genomics: Forecasting with a Horizon Scan-like Exercise. Journal of Heredity, 2019, 110, 261-274.	1.0	9
27	Endemic infection can shape exposure to novel pathogens: Pathogen coâ€occurrence networks in the Serengeti lions. Ecology Letters, 2019, 22, 904-913.	3.0	14
28	Speciesâ€specific spatiotemporal patterns of leopard, lion and tiger attacks on humans. Journal of Applied Ecology, 2019, 56, 585-593.	1.9	24
29	Incorporating genomic methods into contact networks to reveal new insights into animal behaviour and infectious disease dynamics. Behaviour, 2018, 155, 759-791.	0.4	16
30	Distance, environmental and substrate factors impacting recovery of bryophyte communities after harvesting. Applied Vegetation Science, 2018, 21, 64-75.	0.9	8
31	Towards an ecoâ€phylogenetic framework for infectious disease ecology. Biological Reviews, 2018, 93, 950-970.	4.7	63
32	Domestic horses within the Maya biosphere reserve: A possible threat to the Central American tapir (Tapirus bairdii). Caldasia, 2018, 40, 188-191.	0.1	0
33	Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evolutionary Applications, 2018, 11, 1763-1778.	1.5	37
34	Trophic position determines functional and phylogenetic recovery after disturbance within a community. Functional Ecology, 2017, 31, 1441-1451.	1.7	20
35	Urban landscapes can change virus gene flow and evolution in a fragmentationâ€sensitive carnivore. Molecular Ecology, 2017, 26, 6487-6498.	2.0	40
36	Linking social and spatial networks to viral community phylogenetics reveals subtypeâ€specific transmission dynamics in African lions. Journal of Animal Ecology, 2017, 86, 1469-1482.	1.3	22

#	Article	IF	CITATIONS
37	Mitochondrial genome sequencing reveals potential origins of the scabies mite Sarcoptes scabiei infesting two iconic Australian marsupials. BMC Evolutionary Biology, 2017, 17, 233.	3.2	22
38	Temporal persistence of edge effects on bryophytes within harvested forests. Forest Ecology and Management, 2016, 375, 223-229.	1.4	10
39	Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecological Entomology, 2015, 40, 1-13.	1.1	85
40	Living near the edge: Being close to mature forest increases the rate of succession in beetle communities. Ecological Applications, 2015, 25, 800-811.	1.8	31
41	Microclimate through space and time: Microclimatic variation at the edge of regeneration forests over daily, yearly and decadal time scales. Forest Ecology and Management, 2014, 334, 174-184.	1.4	65
42	Beetle communities associated with the tree fern <i>Dicksonia antarctica</i> Labill. in Tasmania. Australian Journal of Entomology, 2012, 51, 154-165.	1.1	4