Jeffrey Segall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/203525/publications.pdf

Version: 2024-02-01

58 6,769 34 56
papers citations h-index g-index

58 58 58 6751 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Spatial and temporal dynamics of RhoA activities of single breast tumor cells in a 3D environment revealed by a machine learning-assisted FRET technique. Experimental Cell Research, 2022, 410, 112939.	2.6	4
2	Tumor spheroid invasion in epidermal growth factor gradients revealed by a 3D microfluidic device. Physical Biology, 2022, 19, 036002.	1.8	2
3	Palbociclib Renders Human Papilloma Virus–Negative Head and Neck Squamous Cell Carcinoma Vulnerable to the Senolytic Agent Navitoclax. Molecular Cancer Research, 2021, 19, 862-873.	3.4	17
4	Direct measurement of vertical forces shows correlation between mechanical activity and proteolytic ability of invadopodia. Science Advances, 2020, 6, eaax6912.	10.3	35
5	Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes. Cancer Reports, 2019, 2, e1213.	1.4	17
6	An Akt3 Splice Variant Lacking the Serine 472 Phosphorylation Site Promotes Apoptosis and Suppresses Mammary Tumorigenesis. Cancer Research, 2018, 78, 103-114.	0.9	13
7	Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Research, 2018, 20, 131.	5.0	11
8	A novel neuregulin – jagged1 paracrine loop in breast cancer transendothelial migration. Breast Cancer Research, 2018, 20, 24.	5.0	22
9	miR-375 Regulates Invasion-Related Proteins Vimentin and L-Plastin. American Journal of Pathology, 2017, 187, 1523-1536.	3.8	11
10	Apolipoprotein E Promotes Invasion in Oral Squamous Cell Carcinoma. American Journal of Pathology, 2017, 187, 2259-2272.	3.8	22
11	Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene, 2014, 33, 3784-3793.	5.9	85
12	Slug Promotes Survival during Metastasis through Suppression of Puma-Mediated Apoptosis. Cancer Research, 2014, 74, 3695-3706.	0.9	37
13	Phosphoinositide 3-kinase signaling is critical for ErbB3-driven breast cancer cell motility and metastasis. Oncogene, 2012, 31, 706-715.	5.9	55
14	Dormancy Signatures and Metastasis in Estrogen Receptor Positive and Negative Breast Cancer. PLoS ONE, 2012, 7, e35569.	2.5	168
15	Apoptosis Inhibitor ARC Promotes Breast Tumorigenesis, Metastasis, and Chemoresistance. Cancer Research, 2011, 71, 7705-7715.	0.9	53
16	Intravital Imaging and Photoswitching in Tumor Invasion and Intravasation Microenvironments. Microscopy Today, 2010, 18, 34-37.	0.3	10
17	Monomeric red fluorescent proteins with a large Stokes shift. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5369-5374.	7.1	149
18	Molecular mechanisms of invadopodium formation. Journal of Cell Biology, 2005, 168, 441-452.	5.2	597

#	Article	IF	CITATIONS
19	A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors. Cancer Research, 2004, 64, 7022-7029.	0.9	1,019
20	Lamellipodia in invasion. Seminars in Cancer Biology, 2001, 11, 119-128.	9.6	116
21	The F-actin side binding activity of the Arp2/3 complex is essential for actin nucleation and lamellipod extension. Current Biology, $2001, 11, 620-625$.	3.9	139
22	N-terminal Domains of the Class IA Phosphoinositide 3-Kinase Regulatory Subunit Play a Role in Cytoskeletal but Not Mitogenic Signaling. Journal of Biological Chemistry, 2001, 276, 16374-16378.	3.4	24
23	\hat{a} \in ∤ and should be treated the same as genomics. Nature, 2000, 403, 478-478.	27.8	1
24	Specific Requirement for the p85-p110α Phosphatidylinositol 3-Kinase during Epidermal Growth Factor-stimulated Actin Nucleation in Breast Cancer Cells. Journal of Biological Chemistry, 2000, 275, 3741-3744.	3.4	77
25	Role of Cofilin in Epidermal Growth Factor–Stimulated Actin Polymerization and Lamellipod Protrusion. Journal of Cell Biology, 2000, 148, 531-542.	5.2	226
26	A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Research, 2000, 60, 2504-11.	0.9	292
27	The collection of the motile population of cells from a living tumor. Cancer Research, 2000, 60, 5401-4.	0.9	97
28	Integration of Rac-dependent Regulation of Cyclin D1 Transcription through a Nuclear Factor-κB-dependent Pathway. Journal of Biological Chemistry, 1999, 274, 25245-25249.	3.4	260
29	Relationship between Arp2/3 Complex and the Barbed Ends of Actin Filaments at the Leading Edge of Carcinoma Cells after Epidermal Growth Factor Stimulation. Journal of Cell Biology, 1999, 145, 331-345.	5.2	193
30	Cell polarization: Chemotaxis gets CRACking. Current Biology, 1999, 9, R46-R48.	3.9	5
31	Chemoattractant-induced lamellipod extension. , 1998, 43, 433-443.		58
32	TheDictyosteliumMAP Kinase DdERK2 Functions as a Cytosolic Protein in Complexes with Its Potential Substrates in Chemotactic Signal Transduction. Biochemical and Biophysical Research Communications, 1998, 244, 149-155.	2.1	3
33	Regulation of Protrusion Shape and Adhesion to the Substratum during Chemotactic Responses of Mammalian Carcinoma Cells. Experimental Cell Research, 1998, 241, 285-299.	2.6	143
34	Suppression of Ruffling by the EGF Receptor in Chemotactic Cells. Experimental Cell Research, 1998, 242, 100-109.	2.6	26
35	Cell motility of tumor cells visualized in living intact primary tumors using green fluorescent protein. Cancer Research, 1998, 58, 2528-32.	0.9	125
36	Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO Journal, 1997, 16, 83-97.	7.8	193

#	Article	IF	CITATIONS
37	EGF stimulates lamellipod extension in metastatic mammary adenocarcinoma cells by an actin-dependent mechanism. Clinical and Experimental Metastasis, 1996, 14, 61-72.	3.3	126
38	The Dictyostelium MAP kinase ERK2 regulates multiple, independent developmental pathways Genes and Development, 1996, 10, 118-128.	5.9	72
39	Dual role of cAMP and involvement of both G-proteins and ras in regulation of ERK2 in Dictyostelium discoideum. EMBO Journal, 1996, 15, 3361-8.	7.8	16
40	Recombinative desorption of hydrogen from the Ge(100)–(2×1) surface: A laserâ€induced desorption study. Journal of Chemical Physics, 1995, 102, 7222-7228.	3.0	37
41	A MAP kinase necessary for receptor-mediated activation of adenylyl cyclase in Dictyostelium Journal of Cell Biology, 1995, 128, 405-413.	5.2	170
42	Polarization of yeast cells in spatial gradients of alpha mating factor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8332-8336.	7.1	235
43	Chemotaxis of metastatic tumor cells: Clues to mechanisms from the Dictyostelium paradigm. Cancer and Metastasis Reviews, 1992, 11, 55-68.	5.9	48
44	Behavioral responses of streamer F mutants of Dictyostelium discoideum: effects of cyclic GMP on cell motility. Journal of Cell Science, 1992, 101 (Pt 3), 589-97.	2.0	6
45	A Dictyostelium mutant lacking an F-actin cross-linking protein, the 120-kD gelation factor Journal of Cell Biology, 1990, 111, 1477-1489.	5.2	101
46	A Dictyostelium mutant deficient in severin, an F-actin fragmenting protein, shows normal motility and chemotaxis Journal of Cell Biology, 1989, 108, 985-995.	5.2	96
47	Genetic approaches to cytoskeleton function and the control of cell motility. Current Opinion in Cell Biology, 1989, 1, 44-50.	5.4	32
48	Quantification of motility and area changes of Dictyostelium discoideum amoebae in response to chemoattractants. Journal of Muscle Research and Cell Motility, 1988, 9, 481-490.	2.0	14
49	Overtoneâ€induced isomerization of allyl isocyanide. Journal of Chemical Physics, 1988, 89, 5704-5714.	3.0	18
50	Selection of chemotaxis mutants of Dictyostelium discoideum Journal of Cell Biology, 1987, 104, 151-161.	5.2	33
51	Temporal comparisons in bacterial chemotaxis Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8987-8991.	7.1	442
52	Chemotactic signaling in filamentous cells of Escherichia coli. Journal of Bacteriology, 1985, 161, 51-59.	2.2	107
53	Adaptation kinetics in bacterial chemotaxis. Journal of Bacteriology, 1983, 154, 312-323.	2.2	279
54	Coordination of flagella on filamentous cells of Escherichia coli. Journal of Bacteriology, 1983, 155, 228-237.	2.2	105

#	Article	IF	CITATIONS
55	Impulse responses in bacterial chemotaxis. Cell, 1982, 31, 215-226.	28.9	280
56	Signal processing times in bacterial chemotaxis. Nature, 1982, 296, 855-857.	27.8	179
57	Irreversible inhibition of S-adenosylhomocysteine hydrolase by nucleoside analogs. Archives of Biochemistry and Biophysics, 1981, 207, 175-184.	3.0	67
58	Chemotaxis of Cancer Cells during Invasion and Metastasis. , 0, , 175-188.		1