List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2034982/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma levels of angiopoietin-2, VEGF-A, and VCAM-1 as markers of bevacizumab-induced hypertension: CALGB 80303 and 90401 (Alliance). Angiogenesis, 2022, 25, 47-55.	7.2	8
2	Genomeâ€wide association studies of survival in 1520 cancer patients treated with bevacizumabâ€containing regimens. International Journal of Cancer, 2022, 150, 279-289.	5.1	8
3	Survival in Young-Onset Metastatic Colorectal Cancer: Findings From Cancer and Leukemia Group B (Alliance)/SWOG 80405. Journal of the National Cancer Institute, 2022, 114, 427-435.	6.3	24
4	Bevacizumab-induced hypertension and proteinuria: a genome-wide study of more than 1000 patients. British Journal of Cancer, 2022, 126, 265-274.	6.4	8
5	Integration of DNA sequencing with population pharmacokinetics to improve the prediction of irinotecan exposure in cancer patients. British Journal of Cancer, 2022, 126, 640-651.	6.4	7
6	Molecular characteristics and clinical outcomes of patients with Neurofibromin 1-altered metastatic colorectal cancer. Oncogene, 2022, 41, 260-267.	5.9	7
7	PIK3R5 genetic predictors of hypertension induced by VEGF-pathway inhibitors. Pharmacogenomics Journal, 2022, 22, 82-88.	2.0	7
8	Response to Comment on Dawed et al. Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care 2021;44:2673–2682. Diabetes Care, 2022, 45, e82-e83.	8.6	0
9	All You Need to Know About <i>UGT1A1</i> Genetic Testing for Patients Treated With Irinotecan: A Practitioner-Friendly Guide. JCO Oncology Practice, 2022, 18, 270-277.	2.9	24
10	Modelâ€Based Prediction of Irinotecanâ€Induced Grade 4 Neutropenia in Advanced Cancer Patients: Influence of Demographic and Clinical Factors. Clinical Pharmacology and Therapeutics, 2022, 112, 316-326.	4.7	3
11	KDR genetic predictor of toxicities induced by sorafenib and regorafenib. Pharmacogenomics Journal, 2022, 22, 251-257.	2.0	2
12	Polygenic Risk Scores for Blood Pressure to Assess the Risk of Severe Bevacizumabâ€Induced Hypertension in Cancer Patients (Alliance). Clinical Pharmacology and Therapeutics, 2022, 112, 364-371.	4.7	1
13	IGF-Binding Proteins, Adiponectin, and Survival in Metastatic Colorectal Cancer: Results From CALGB (Alliance)/SWOG 80405. JNCI Cancer Spectrum, 2021, 5, pkaa074.	2.9	6
14	The association between adverse events and outcome under checkpoint inhibitors: Where is the deal?. Translational Oncology, 2021, 14, 100952.	3.7	0
15	Reply to A. D. King et al. JCO Oncology Practice, 2021, 17, 455-455.	2.9	1
16	Pharmacogenomicâ€Guided Therapy in Colorectal Cancer. Clinical Pharmacology and Therapeutics, 2021, 110, 616-625.	4.7	14
17	Genetic effects on liver chromatin accessibility identify disease regulatory variants. American Journal of Human Genetics, 2021, 108, 1169-1189.	6.2	22
18	Racial differences in survival and response to therapy in patients with metastatic colorectal cancer: A secondary analysis of CALGB/SWOG 80405 (Alliance A151931), Cancer, 2021, 127, 3801-3808	4.1	6

#	Article	IF	CITATIONS
19	Genome-Wide Meta-analysis Identifies Genetic Variants Associated With Glycemic Response to Sulfonylureas. Diabetes Care, 2021, 44, 2673-2682.	8.6	23
20	Diabetes and Clinical Outcome in Patients With Metastatic Colorectal Cancer: CALGB 80405 (Alliance). JNCI Cancer Spectrum, 2020, 4, pkz078.	2.9	22
21	A New Liver Expression Quantitative Trait Locus Map From 1,183 Individuals Provides Evidence for Novel Expression Quantitative Trait Loci of Drug Response, Metabolic, and Sexâ€Biased Phenotypes. Clinical Pharmacology and Therapeutics, 2020, 107, 1383-1393.	4.7	20
22	Body Mass Index and Weight Loss in Metastatic Colorectal Cancer in CALGB (Alliance)/SWOG 80405. JNCI Cancer Spectrum, 2020, 4, pkaa024.	2.9	8
23	All You Need to Know About <i>DPYD</i> Genetic Testing for Patients Treated With Fluorouracil and Capecitabine: A Practitioner-Friendly Guide. JCO Oncology Practice, 2020, 16, 793-798.	2.9	46
24	Association of Coffee Intake With Survival in Patients With Advanced or Metastatic Colorectal Cancer. JAMA Oncology, 2020, 6, 1713.	7.1	24
25	Association of Diet Quality With Survival Among People With Metastatic Colorectal Cancer in the Cancer and Leukemia B and Southwest Oncology Group 80405 Trial. JAMA Network Open, 2020, 3, e2023500.	5.9	8
26	Optimal Sampling Strategies for Irinotecan (CPT-11) and its Active Metabolite (SN-38) in Cancer Patients. AAPS Journal, 2020, 22, 59.	4.4	4
27	Associations of Physical Activity With Survival and Progression in Metastatic Colorectal Cancer: Results From Cancer and Leukemia Group B (Alliance)/SWOG 80405. Journal of Clinical Oncology, 2019, 37, 2620-2631.	1.6	51
28	Plasma 25-Hydroxyvitamin D Levels and Survival in Patients with Advanced or Metastatic Colorectal Cancer: Findings from CALGB/SWOG 80405 (Alliance). Clinical Cancer Research, 2019, 25, 7497-7505.	7.0	44
29	fastJT: An R package for robust and efficient feature selection for machine learning and genome-wide association studies. BMC Bioinformatics, 2019, 20, 333.	2.6	2
30	Influence of genetic variation in the vitamin D pathway on plasma 25-hydroxyvitamin D3 levels and survival among patients with metastatic colorectal cancer. Cancer Causes and Control, 2019, 30, 757-765.	1.8	4
31	Mutational Analysis of Patients With Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. Journal of Clinical Oncology, 2019, 37, 1217-1227.	1.6	234
32	An initial genetic analysis of gemcitabine-induced high-grade neutropenia in pancreatic cancer patients in CALGB 80303 (Alliance). Pharmacogenetics and Genomics, 2019, 29, 123-131.	1.5	4
33	Genetic Variants of <i>VEGFA</i> and <i>FLT4</i> Are Determinants of Survival in Renal Cell Carcinoma Patients Treated with Sorafenib. Cancer Research, 2019, 79, 231-241.	0.9	24
34	The Genotype for <i><scp>DPYD</scp></i> Risk Variants in Patients With Colorectal Cancer and the Related Toxicity Management Costs in Clinical Practice. Clinical Pharmacology and Therapeutics, 2019, 105, 994-1002.	4.7	39
35	A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Reports, 2018, 23, 327-336.	6.4	76
36	Challenges and Solutions for Future Pharmacy Practice in the Era of Precision Medicine. American Journal of Pharmaceutical Education, 2018, 82, 6652.	2.1	4

#	Article	IF	CITATIONS
37	Genetic variation determines VEGF-A plasma levels in cancer patients. Scientific Reports, 2018, 8, 16332.	3.3	10
38	The vitamin D receptor gene as a determinant of survival in pancreatic cancer patients: Genomic analysis and experimental validation. PLoS ONE, 2018, 13, e0202272.	2.5	13
39	Reply to L. Casadaban et al. Journal of Clinical Oncology, 2017, 35, 1373-1374.	1.6	0
40	Effect of First-Line Chemotherapy Combined With Cetuximab or Bevacizumab on Overall Survival in Patients With <i>KRAS</i> Wild-Type Advanced or Metastatic Colorectal Cancer. JAMA - Journal of the American Medical Association, 2017, 317, 2392.	7.4	670
41	Genotype-Guided Dosing Study of FOLFIRI plus Bevacizumab in Patients with Metastatic Colorectal Cancer. Clinical Cancer Research, 2017, 23, 918-924.	7.0	35
42	Bringing a genomic perspective to the safety of drug treatment in oncology. F1000Research, 2017, 6, 385.	1.6	3
43	Phase III Trial Evaluating Letrozole As First-Line Endocrine Therapy With or Without Bevacizumab for the Treatment of Postmenopausal Women With Hormone Receptor–Positive Advanced-Stage Breast Cancer: CALGB 40503 (Alliance). Journal of Clinical Oncology, 2016, 34, 2602-2609.	1.6	101
44	Bloodâ€based markers of efficacy and resistance to cetuximab treatment in metastatic colorectal cancer: results from <scp>CALGB</scp> 80203 (Alliance). Cancer Medicine, 2016, 5, 2249-2260.	2.8	19
45	Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nature Genetics, 2016, 48, 1055-1059.	21.4	165
46	Association Between Results of a Gene Expression Signature Assay and Recurrence-Free Interval in Patients With Stage II Colon Cancer in Cancer and Leukemia Group B 9581 (Alliance). Journal of Clinical Oncology, 2016, 34, 3047-3053.	1.6	51
47	Genomic Characterization of Metformin Hepatic Response. PLoS Genetics, 2016, 12, e1006449.	3.5	41
48	Functional FLT1 Genetic Variation is a Prognostic Factor for Recurrence in Stage I–III Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2015, 10, 1067-1075.	1.1	15
49	Genetic Diversity of the KIR/HLA System and Outcome of Patients with Metastatic Colorectal Cancer Treated with Chemotherapy. PLoS ONE, 2014, 9, e84940.	2.5	40
50	DPYD Variants to Predict 5-FU Toxicity: The Ultimate Proof. Journal of the National Cancer Institute, 2014, 106, dju351-dju351.	6.3	13
51	25-Hydroxyvitamin D Levels and Survival in Advanced Pancreatic Cancer: Findings From CALGB 80303 (Alliance). Journal of the National Cancer Institute, 2014, 106, .	6.3	28
52	Dose-Finding and Pharmacokinetic Study to Optimize the Dosing of Irinotecan According to the <i>UGT1A1</i> Genotype of Patients With Cancer. Journal of Clinical Oncology, 2014, 32, 2328-2334.	1.6	121
53	Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nature Genetics, 2014, 46, 994-1000.	21.4	294
54	Implications of genomeâ€wide association studies in cancer therapeutics. British Journal of Clinical Pharmacology, 2013, 76, 370-380.	2.4	21

#	Article	IF	CITATIONS
55	Architecture of pharmacogenomic associations: structures with functional foundations or castles made of sand?. Pharmacogenomics, 2013, 14, 1-4.	1.3	8
56	Preclinical discovery of candidate genes to guide pharmacogenetics during phase I development. Pharmacogenetics and Genomics, 2013, 23, 374-381.	1.5	14
57	A Guide to the Current Web-Based Resources in Pharmacogenomics. Methods in Molecular Biology, 2013, 1015, 293-310.	0.9	6
58	A Genome-Wide Association Study of Overall Survival in Pancreatic Cancer Patients Treated with Gemcitabine in CALGB 80303. Clinical Cancer Research, 2012, 18, 577-584.	7.0	91
59	Research Highlights: Highlights from the latest articles in germline genomics in oncology. Pharmacogenomics, 2012, 13, 1113-1114.	1.3	2
60	Liver expression quantitative trait loci: a foundation for pharmacogenomic research. Frontiers in Genetics, 2012, 3, 153.	2.3	12
61	One SNP for both cancer risk and survival in colorectal cancer: two for the price of one?. Pharmacogenomics, 2012, 13, 1114.	1.3	0
62	The Use of Genomic Information to Optimize Cancer Chemotherapy. Seminars in Oncology, 2011, 38, 186-195.	2.2	27
63	Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue. PLoS Genetics, 2011, 7, e1002078.	3.5	191
64	Genotype-Driven Phase I Study of Irinotecan Administered in Combination With Fluorouracil/Leucovorin in Patients With Metastatic Colorectal Cancer. Journal of Clinical Oncology, 2010, 28, 866-871.	1.6	156
65	Individualizing Dosing of Irinotecan. Clinical Cancer Research, 2010, 16, 371-372.	7.0	16
66	Gemcitabine Plus Bevacizumab Compared With Gemcitabine Plus Placebo in Patients With Advanced Pancreatic Cancer: Phase III Trial of the Cancer and Leukemia Group B (CALGB 80303). Journal of Clinical Oncology, 2010, 28, 3617-3622.	1.6	758
67	The Werner's syndrome 4330T>C (Cys1367Arg) gene variant does not affect the in vitro cytotoxicity of topoisomerase inhibitors and platinum compounds. Cancer Chemotherapy and Pharmacology, 2009, 63, 881-887.	2.3	4
68	Predictive Role of the <i>UGT1A1</i> , <i>UGT1A7</i> , and <i>UGT1A9</i> Genetic Variants and Their Haplotypes on the Outcome of Metastatic Colorectal Cancer Patients Treated With Fluorouracil, Leucovorin, and Irinotecan. Journal of Clinical Oncology, 2009, 27, 2457-2465.	1.6	216
69	Comprehensive Pharmacogenetic Analysis of Irinotecan Neutropenia and Pharmacokinetics. Journal of Clinical Oncology, 2009, 27, 2604-2614.	1.6	236
70	Pharmacogenetic Testing for Uridine Diphosphate Glucuronosyltransferase 1A1 Polymorphisms: Are We There Yet?. Pharmacotherapy, 2008, 28, 755-768.	2.6	52
71	Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenetics and Genomics, 2008, 18, 683-697.	1.5	73
72	Role ofUGT1A1*6in irinogenetics in Asians. Personalized Medicine, 2007, 4, 431-434.	1.5	0

FEDERICO INNOCENTI

#	Article	IF	CITATIONS
73	The Role of SN-38 Exposure,UGT1A1*28Polymorphism, and Baseline Bilirubin Level in Predicting Severe Irinotecan Toxicity. Journal of Clinical Pharmacology, 2007, 47, 78-86.	2.0	77
74	Challenges in the development and use of pharmacogenomic markers in oncology. The Journal of Supportive Oncology, 2007, 5, 15-6.	2.3	0
75	Irinogenetics: What Is the Right Star?. Journal of Clinical Oncology, 2006, 24, 2221-2224.	1.6	54
76	Pharmacogenetics of irinotecan: clinical perspectives on the utility of genotyping. Pharmacogenomics, 2006, 7, 1211-1221.	1.3	81
77	Haplotypes of variants in the UDP-glucuronosyltransferase1A9 and 1A1 genes. Pharmacogenetics and Genomics, 2005, 15, 295-301.	1.5	105
78	Genetic Variants in the <i>UDP-glucuronosyltransferase 1A1</i> Gene Predict the Risk of Severe Neutropenia of Irinotecan. Journal of Clinical Oncology, 2004, 22, 1382-1388.	1.6	927
79	?Irinogenetics? and UGT1A: from genotypes to haplotypes*1. Clinical Pharmacology and Therapeutics, 2004, 75, 495-500.	4.7	37
80	A phase I trial of pharmacologic modulation of irinotecan with cyclosporine and phenobarbital. Clinical Pharmacology and Therapeutics, 2004, 76, 490-502.	4.7	53
81	Irinotecan treatment in cancer patients with UGT1A1 polymorphisms. Oncology, 2003, 17, 52-5.	0.5	28
82	Haplotype structure of the UDP-glucuronosyltransferase 1A1 promoter in different ethnic groups. Pharmacogenetics and Genomics, 2002, 12, 725-733.	5.7	154
83	Pharmacogenetics. Clinical Pharmacokinetics, 2000, 39, 315-325.	3.5	39

Pharmacogenomics of Chemotherapeutic Agents in Cancer Treatment. , 0, , 283-309.

1