Luca M Munaron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2034723/publications.pdf Version: 2024-02-01

161849
54
g-index
3971
d citing authors

#	Article	IF	CITATIONS
1	P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium. Cancers, 2022, 14, 2743.	3.7	5
2	The Transcriptional Landscape of BRAF Wild Type Metastatic Melanoma: A Pilot Study. International Journal of Molecular Sciences, 2022, 23, 6898.	4.1	1
3	Isolation and Characterization of Buccal Fat Pad and Dental Pulp MSCs from the Same Donor. Biomedicines, 2021, 9, 265.	3.2	9
4	Bioactive Triterpenes of Protium heptaphyllum Gum Resin Extract Display Cholesterol-Lowering Potential. International Journal of Molecular Sciences, 2021, 22, 2664.	4.1	22
5	Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacological Research, 2021, 168, 105581.	7.1	26
6	Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants, 2021, 10, 1229.	5.1	41
7	Editorial: Mechanisms of Vessel Development: From a Primitive Draft to a Mature Vasculature. Frontiers in Physiology, 2021, 12, 725531.	2.8	1
8	Oral Cavity as a Source of Mesenchymal Stem Cells Useful for Regenerative Medicine in Dentistry. Biomedicines, 2021, 9, 1085.	3.2	18
9	A Transcriptomic Approach Reveals Selective Ribosomal Remodelling in the Tumour Versus the Stromal Compartment of Metastatic Colorectal Cancer. Cancers, 2021, 13, 4188.	3.7	4
10	Endothelial Heme Dynamics Drive Cancer Cell Metabolism by Shaping the Tumor Microenvironment. Biomedicines, 2021, 9, 1557.	3.2	5
11	Endothelial Cells Promote Osteogenesis by Establishing a Functional and Metabolic Coupling With Human Mesenchymal Stem Cells. Frontiers in Physiology, 2021, 12, 813547.	2.8	3
12	Beta1-integrin and TRPV4 are involved in osteoblast adhesion to different titanium surface topographies. Applied Surface Science, 2020, 507, 145112.	6.1	8
13	Calcium-Permeable Channels in Tumor Vascularization: Peculiar Sensors of Microenvironmental Chemical and Physical Cues. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 1.	1.6	11
14	Regulation of Vessel Permeability by TRP Channels. Frontiers in Physiology, 2020, 11, 421.	2.8	12
15	MORPHEUS: An automated tool for unbiased and reproducible cell morphometry. Journal of Cellular Physiology, 2020, 235, 10110-10115.	4.1	5
16	Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review. International Journal of Molecular Sciences, 2020, 21, 523.	4.1	25
17	Transient Receptor Potential Channel Expression Signatures in Tumor-Derived Endothelial Cells: Functional Roles in Prostate Cancer Angiogenesis. Cancers, 2019, 11, 956.	3.7	27
18	The Crosstalk Between Osteodifferentiating Stem Cells and Endothelial Cells Promotes Angiogenesis and Bone Formation. Frontiers in Physiology, 2019, 10, 1291.	2.8	36

#	Article	IF	CITATIONS
19	Purinergic Calcium Signals in Tumor-Derived Endothelium. Cancers, 2019, 11, 766.	3.7	20
20	The interaction of SiO ₂ nanoparticles with the neuronal cell membrane: activation of ionic channels and calcium influx. Nanomedicine, 2019, 14, 575-594.	3.3	7
21	Purinergic P2X7 Receptor: A Cation Channel Sensitive to Tumor Microenvironment. Recent Patents on Anti-Cancer Drug Discovery, 2019, 14, 32-38.	1.6	20
22	Natural dietary antioxidants containing flavonoids modulate keratinocytes physiology: In vitro tri-culture models. Journal of Ethnopharmacology, 2019, 238, 111844.	4.1	10
23	Alternative Strategies to Inhibit Tumor Vascularization. International Journal of Molecular Sciences, 2019, 20, 6180.	4.1	10
24	Serenoa repensandN-acetyl glucosamine/milk proteins complex differentially affect the paracrine communication between endothelial and follicle dermal papilla cells. Journal of Cellular Physiology, 2019, 234, 7320-7329.	4.1	3
25	SiO2 nanoparticles modulate the electrical activity of neuroendocrine cells without exerting genomic effects. Scientific Reports, 2018, 8, 2760.	3.3	9
26	Hydrogenated amorphous silicon coatings may modulate gingival cell response. Applied Surface Science, 2018, 436, 603-612.	6.1	15
27	Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death and Differentiation, 2018, 25, 573-588.	11.2	78
28	Pleiotropic Effects of White Willow Bark and 1,2-Decanediol on Human Adult Keratinocytes. Skin Pharmacology and Physiology, 2018, 31, 10-18.	2.5	7
29	Human cytomegalovirus US21 protein is a viroporin that modulates calcium homeostasis and protects cells against apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12370-E12377.	7.1	24
30	Targeting Metabolism to Counteract Tumor Angiogenesis: A Review of Patent Literature. Recent Patents on Anti-Cancer Drug Discovery, 2018, 13, 422-427.	1.6	11
31	Early Response of Fibroblasts and Epithelial Cells to Pink-Shaded Anodized Dental Implant Abutments: An In Vitro Study. International Journal of Oral and Maxillofacial Implants, 2018, 33, 571-579.	1.4	27
32	Nano-Pore Size of Alumina Affects Osteoblastic Response. International Journal of Molecular Sciences, 2018, 19, 528.	4.1	22
33	Osteogenic Differentiation Modulates the Cytokine, Chemokine, and Growth Factor Profile of ASCs and SHED. International Journal of Molecular Sciences, 2018, 19, 1454.	4.1	31
34	An Innovative Assay for the Analysis of In Vitro Endothelial Remodeling: Experimental and Computational Evidence. Journal of Cellular Physiology, 2017, 232, 243-248.	4.1	0
35	In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces. Applied Surface Science, 2017, 409, 314-324.	6.1	24
36	TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1. Journal of Cell Biology, 2017, 216, 2107-2130.	5.2	66

#	Article	IF	CITATIONS
37	Hypoxia and hydrogen sulfide differentially affect normal and tumor-derived vascular endothelium. Redox Biology, 2017, 12, 499-504.	9.0	18
38	Dermalâ€Epidermal Crossâ€Talk: Differential Interactions With Microvascular Endothelial Cells. Journal of Cellular Physiology, 2017, 232, 897-903.	4.1	6
39	Role of surface finishing on the in vitro biological properties of a silicon nitride–titanium nitride (Si3N4–TiN) composite. Journal of Materials Science, 2017, 52, 467-477.	3.7	20
40	Effects of the biomimetic peptide Shâ€Polypeptide 9 (<scp>CG</scp> â€ <scp>VEGF</scp>) on cocultures of human hair follicle dermal papilla cells and microvascular endothelial cells. Experimental Dermatology, 2016, 25, 237-239.	2.9	8
41	Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling. Scientific Reports, 2016, 6, 32602.	3.3	57
42	Overcoming physical constraints in bone engineering: †the importance of being vascularized'. Journal of Biomaterials Applications, 2016, 30, 940-951.	2.4	31
43	Effects of flavonoid derivatives on human microvascular endothelial cells. Natural Product Research, 2016, 30, 2831-2834.	1.8	10
44	Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets, 2016, 27, 467-471.	2.3	126
45	Computational Approaches for Translational Oncology: Concepts and Patents. Recent Patents on Anti-Cancer Drug Discovery, 2016, 11, 384-392.	1.6	3
46	A cellular Potts model analyzing differentiated cell behavior during in vivo vascularization of a hypoxic tissue. Computers in Biology and Medicine, 2015, 63, 143-156.	7.0	16
47	Paracrine crosstalk between human hair follicle dermal papilla cells and microvascular endothelial cells. Experimental Dermatology, 2015, 24, 388-390.	2.9	34
48	A Functional Transient Receptor Potential Vanilloid 4 (TRPV4) Channel Is Expressed in Human Endothelial Progenitor Cells. Journal of Cellular Physiology, 2015, 230, 95-104.	4.1	45
49	Systems biology of ion channels and transporters in tumor angiogenesis: An omics view. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2647-2656.	2.6	27
50	Role of Calcium Channels in the Protective Effect of Hydrogen Sulfide in Rat Cardiomyoblasts. Cellular Physiology and Biochemistry, 2014, 33, 1205-1214.	1.6	33
51	Functional properties of ion channels and transporters in tumour vascularization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130103.	4.0	31
52	Hydrogen sulphide triggers VEGF-induced intracellular Ca2+ signals in human endothelial cells but not in their immature progenitors. Cell Calcium, 2014, 56, 225-234.	2.4	59
53	Hydrogen Sulfide and Endothelial Dysfunction: Relationship with Nitric Oxide. Current Medicinal Chemistry, 2014, 21, 3646-3661.	2.4	71
54	Endothelial Remodelling and Intracellular Calcium Machinery. Current Molecular Medicine, 2014, 14, 457-480.	1.3	72

#	Article	IF	CITATIONS
55	Hydrogen sulfide as a regulator of calcium channels. Cell Calcium, 2013, 53, 77-84.	2.4	61
56	The role of ion channels and transporters in cell proliferation and cancer. Frontiers in Physiology, 2013, 4, 312.	2.8	41
57	Editorial [Hot Topic Intracellular Calcium Signaling: Holding the Balance between Health and Disease Guest Editor: Luca Munaron]. Current Medicinal Chemistry, 2012, 19, 5765-5767.	2.4	6
58	Ion channels and transporters in cancer. 6. Vascularizing the tumor: TRP channels as molecular targets. American Journal of Physiology - Cell Physiology, 2012, 302, C9-C15.	4.6	56
59	TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene, 2012, 31, 200-212.	5.9	153
60	Targeting Calcium Channels to Block Tumor Vascularization. Recent Patents on Anti-Cancer Drug Discovery, 2012, 8, 27-37.	1.6	16
61	Editorial [Hot Topic Ion Fluxes and Cancer (Guest Editors: Luca Munaron and Annarosa Arcangeli)]. Recent Patents on Anti-Cancer Drug Discovery, 2012, 8, 1-3.	1.6	5
62	Multilevel complexity of calcium signaling: Modeling angiogenesis. World Journal of Biological Chemistry, 2012, 3, 121.	4.3	13
63	Targeting Calcium Channels to Block Tumor Vascularization. Recent Patents on Anti-Cancer Drug Discovery, 2012, 8, 27-37.	1.6	15
64	Editorial [Hot Topic Ion Fluxes and Cancer (Guest Editors: Luca Munaron and Annarosa Arcangeli)]. Recent Patents on Anti-Cancer Drug Discovery, 2012, 8, 1-3.	1.6	6
65	Hydrogen Sulfide Regulates Intracellular Ca2+ Concentration in Endothelial Cells From Excised Rat Aorta. Current Pharmaceutical Biotechnology, 2011, 12, 1416-1426.	1.6	53
66	A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. Progress in Biophysics and Molecular Biology, 2011, 106, 450-462.	2.9	51
67	Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells. Free Radical Biology and Medicine, 2011, 51, 1765-1773.	2.9	83
68	Old and New Gasotransmitters in the Cardiovascular System: Focus on the Role of Nitric Oxide and Hydrogen Sulfide in Endothelial Cells and Cardiomyocytes. Current Pharmaceutical Biotechnology, 2011, 12, 1406-1415.	1.6	39
69	Multiscale model of tumor-derived capillary-like network formation. Networks and Heterogeneous Media, 2011, 6, 597-624.	1.1	4
70	Shuffling the cards in signal transduction: Calcium, arachidonic acid and mechanosensitivity. World Journal of Biological Chemistry, 2011, 2, 59.	4.3	23
71	Multiple Roles of Protein Kinase A in Arachidonic Acid–Mediated Ca2+ Entry and Tumor-Derived Human Endothelial Cell Migration. Molecular Cancer Research, 2010, 8, 1466-1476.	3.4	37
72	Arachidonic acid and calcium signals in human breast tumor-derived endothelial cells: a proteomic study. Journal of Receptor and Signal Transduction Research, 2009, 29, 257-265.	2.5	3

#	Article	IF	CITATIONS
73	Endothelial Calcium Machinery and Angiogenesis: Understanding Physiology to Interfere with Pathology. Current Medicinal Chemistry, 2009, 16, 4691-4703.	2.4	79
74	Zinc-containing bioactive glasses: Surface reactivity and behaviour towards endothelial cells. Acta Biomaterialia, 2009, 5, 1211-1222.	8.3	165
75	Anti-angiogenic properties of calcium trifluoroacetate. Microvascular Research, 2009, 78, 272-277.	2.5	1
76	A Tridimensional Model of Proangiogenic Calcium Signals in Endothelial Cells. The Open Biology Journal, 2009, 2, 114-129.	0.5	6
77	Arachidonic Acid–Induced Ca2+ Entry Is Involved in Early Steps of Tumor Angiogenesis. Molecular Cancer Research, 2008, 6, 535-545.	3.4	69
78	The Secret Marriage between Calcium and Tumor Angiogenesis. Technology in Cancer Research and Treatment, 2008, 7, 335-339.	1.9	26
79	Cytosolic calcium microdomains by arachidonic acid and nitric oxide in endothelial cells. Cell Calcium, 2007, 41, 261-269.	2.4	27
80	Intracellular Calcium, Endothelial Cells and Angiogenesis. Recent Patents on Anti-Cancer Drug Discovery, 2006, 1, 105-119.	1.6	114
81	Oxytocin Induces Proliferation and Migration in Immortalized Human Dermal Microvascular Endothelial Cells and Human Breast Tumor-Derived Endothelial Cells. Molecular Cancer Research, 2006, 4, 351-359.	3.4	68
82	Interaction Between TRPC Channel Subunits in Endothelial Cells. Journal of Receptor and Signal Transduction Research, 2006, 26, 225-240.	2.5	29
83	Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells. FASEB Journal, 2005, 19, 2075-2077.	0.5	31
84	Calcium Signals Activated by Arachidonic Acid in Embryonic Chick Ciliary Ganglion Neurons. NeuroSignals, 2005, 14, 244-254.	0.9	9
85	Blocking Ca2+ Entry: A Way to Control Cell Proliferation. Current Medicinal Chemistry, 2004, 11, 1533-1543.	2.4	76
86	Intracellular calcium signals and control of cell proliferation: how many mechanisms?. Journal of Cellular and Molecular Medicine, 2004, 8, 161-168.	3.6	102
87	Control of endothelial cell proliferation by calcium influx and arachidonic acid metabolism: A pharmacological approach. Journal of Cellular Physiology, 2003, 197, 370-378.	4.1	58
88	Calcium signalling and control of cell proliferation by tyrosine kinase receptors (Review). International Journal of Molecular Medicine, 2002, 10, 671.	4.0	27
89	Expression and functional role of bTRPC1 channels in native endothelial cells. FEBS Letters, 2002, 510, 189-195.	2.8	70
90	Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review). International Journal of Molecular Medicine, 2002, 10, 671-6.	4.0	48

#	Article	IF	CITATIONS
91	Activation of Functional Oxytocin Receptors Stimulates Cell Proliferation in Human Trophoblast and Choriocarcinoma Cell Lines*. Endocrinology, 2001, 142, 1130-1136.	2.8	52
92	Calcium influx, arachidonic acid,and control of endothelialcell proliferation. Cell Calcium, 2001, 30, 235-244.	2.4	52
93	Activation of Functional Oxytocin Receptors Stimulates Cell Proliferation in Human Trophoblast and Choriocarcinoma Cell Lines. Endocrinology, 2001, 142, 1130-1136.	2.8	18
94	Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells. Journal of Cellular Physiology, 2000, 185, 454-463.	4.1	46
95	Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells. , 2000, 185, 454.		1
96	Neuronal survival and calcium influx induced by basic fibroblast growth factor in chick ciliary ganglion neurons. European Journal of Neuroscience, 1998, 10, 2276-2286.	2.6	29
97	Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb-c 3T3 fibroblasts. Cell Calcium, 1997, 22, 179-188.	2.4	69
98	Oxytocin inhibits the proliferation of MDA-MB231 human breast-cancer cellsvia cyclic adenosine monophosphate and protein kinase A. , 1997, 72, 340-344.		77
99	Sustained calcium influx activated by basic fibroblast growth factor in Balb 3T3 fibroblasts Journal of Physiology, 1995, 484, 557-566.	2.9	32
100	Basic Fibroblast Growth Factor Opens Calcium-Permeable Channels in Quail Mesencephalic Neural Crest Neurons. European Journal of Neuroscience, 1995, 7, 516-520.	2.6	19
101	Role of mitogen-induced calcium influx in the control of the cell cycle in Balb-c 3T3 fibroblasts. Cell Calcium, 1995, 18, 542-556.	2.4	35
102	Two currents activated by epidermal growth factor in EGFR-T17 fibroblasts. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1104, 73-82.	2.6	15
103	Potassium and calcium currents activated by foetal calf serum in Balb-c 3T3 fibroblasts. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1112, 241-245.	2.6	10
104	Intracellular calcium regulates the tyrosine kinase receptor encoded by the MET oncogene. Journal of Biological Chemistry, 1991, 266, 16098-16104.	3.4	54
105	Intracellular calcium regulates the tyrosine kinase receptor encoded by the MET oncogene. Journal of Biological Chemistry, 1991, 266, 16098-104.	3.4	45
106	Ceramic Biomaterials for Dental Implants: Current Use and Future Perspectives. , 0, , .		5