
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2034384/publications.pdf Version: 2024-02-01

Ειιμινα Ιισα

#	Article	IF	CITATIONS
1	Sensing, Actuating, and Interacting Through Passive Body Dynamics: A Framework for Soft Robotic Hand Design. Soft Robotics, 2023, 10, 159-173.	4.6	6
2	Action Augmentation of Tactile Perception for Soft-Body Palpation. Soft Robotics, 2022, 9, 280-292.	4.6	17
3	Processing of Selfâ€Healing Polymers for Soft Robotics. Advanced Materials, 2022, 34, e2104798.	11.1	80
4	Manipulation of free-floating objects using Faraday flows and deep reinforcement learning. Scientific Reports, 2022, 12, 335.	1.6	2
5	Magneto-Active Elastomer Filter for Tactile Sensing Augmentation Through Online Adaptive Stiffening. IEEE Robotics and Automation Letters, 2022, 7, 5928-5933.	3.3	5
6	Self-healing ionic gelatin/glycerol hydrogels for strain sensing applications. NPG Asia Materials, 2022, 14, .	3.8	59
7	Towards enduring autonomous robots via embodied energy. Nature, 2022, 602, 393-402.	13.7	84
8	Closing the Control Loop with Time-Variant Embedded Soft Sensors and Recurrent Neural Networks. Soft Robotics, 2022, 9, 1167-1176.	4.6	9
9	Embedded Soft Sensing in a Soft Ring Actuator for Aiding with the Self-Organisation of the In-Hand Rotational Manipulation. , 2022, , .		1
10	Soft Morphing Interface for Tactile Feedback in Remote Palpation. , 2022, , .		5
11	Data-driven Simulation Framework for Expressive Piano Playing by Anthropomorphic Hand with Variable Passive Properties. , 2022, , .		6
12	Mastication-Enhanced Taste-Based Classification of Multi-Ingredient Dishes for Robotic Cooking. Frontiers in Robotics and AI, 2022, 9, .	2.0	8
13	Reach Space Analysis of Baseline Differential Extrinsic Plasticity Control. Frontiers in Neurorobotics, 2022, 16, .	1.6	0
14	Autonomous dishwasher loading from cluttered trays using preâ€ŧrained deep neural networks. Engineering Reports, 2021, 3, e12321.	0.9	3
15	3D Printable Sensorized Soft Gelatin Hydrogel for Multi-Material Soft Structures. IEEE Robotics and Automation Letters, 2021, 6, 5269-5275.	3.3	21
16	Wrist-driven passive grasping: interaction-based trajectory adaption with a compliant anthropomorphic hand. Bioinspiration and Biomimetics, 2021, 16, 026024.	1.5	13
17	MorphFace: A Hybrid Morphable Face for a Robopatient. IEEE Robotics and Automation Letters, 2021, 6, 643-650.	3.3	7
18	Using Redundant and Disjoint Time-Variant Soft Robotic Sensors for Accurate Static State Estimation. IEEE Robotics and Automation Letters, 2021, 6, 2099-2105.	3.3	19

#	Article	IF	CITATIONS
19	Jamming Joints for Stiffness and Posture Control with an Anthropomorphic Hand. , 2021, , .		3
20	Learning to stop: a unifying principle for legged locomotion in varying environments. Royal Society Open Science, 2021, 8, 210223.	1.1	3
21	Topological Study on the Design of Soft Strain Sensors for Simultaneous Multi-point Contact Localization. , 2021, , .		5
22	Editorial: Machine Learning Techniques for Soft Robots. Frontiers in Robotics and AI, 2021, 8, 726774.	2.0	4
23	Online Morphological Adaptation for Tactile Sensing Augmentation. Frontiers in Robotics and AI, 2021, 8, 665030.	2.0	8
24	A review on self-healing polymers for soft robotics. Materials Today, 2021, 47, 187-205.	8.3	150
25	An Abdominal Phantom With Tunable Stiffness Nodules and Force Sensing Capability for Palpation Training. IEEE Transactions on Robotics, 2021, 37, 1051-1064.	7.3	11
26	Bootstrapping Virtual Bipedal Walkers with Robotics Scaffolded Learning. Frontiers in Robotics and Al, 2021, 8, 702599.	2.0	1
27	Morphological Sensitivity and Falling Behavior of Paper V-Shapes. Artificial Life, 2021, , 1-16.	1.0	0
28	Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimentation: A Review. Artificial Life, 2021, 26, 484-506.	1.0	26
29	Comparative Analysis of Model-Based Predictive Shared Control for Delayed Operation in Object Reaching and Recognition Tasks With Tactile Sensing. Frontiers in Robotics and Al, 2021, 8, 730946.	2.0	8
30	Closed-Loop Robotic Cooking of Scrambled Eggs with a Salinity-based â€~Taste' Sensor. , 2021, , .		5
31	Coupling-dependent convergence behavior of phase oscillators with tegotae-control. , 2021, , .		0
32	Bioinspired soft bendable peristaltic pump exploiting ballooning for high volume throughput. , 2021, ,		0
33	Soft Self-Healing Fluidic Tactile Sensors with Damage Detection and Localization Abilities. Sensors, 2021, 21, 8284.	2.1	7
34	Flexible, adaptive industrial assembly: driving innovation through competition. Intelligent Service Robotics, 2020, 13, 169-178.	1.6	9
35	A fieldâ€ŧested robotic harvesting system for iceberg lettuce. Journal of Field Robotics, 2020, 37, 225-245.	3.2	99
36	Improving Robotic Cooking Using Batch Bayesian Optimization. IEEE Robotics and Automation Letters, 2020, 5, 760-765.	3.3	27

#	Article	IF	CITATIONS
37	Augmenting Self-Stability: Height Control of a Bernoulli Ball via Bang-Bang Control. , 2020, , .		3
38	Morphologically programming the interactions of V-shaped falling papers. , 2020, , .		5
39	Structuring of tactile sensory information for category formation in robotics palpation. Autonomous Robots, 2020, 44, 1377-1393.	3.2	12
40	Gaussian process inference modelling of dynamic robot control for expressive piano playing. PLoS ONE, 2020, 15, e0237826.	1.1	6
41	Facial Expression Rendering in Medical Training Simulators: Current Status and Future Directions. IEEE Access, 2020, 8, 215874-215891.	2.6	15
42	Editorial: Current Advances in Soft Robotics: Best Papers From RoboSoft 2018. Frontiers in Robotics and AI, 2020, 7, 56.	2.0	1
43	Drift-Free Latent Space Representation for Soft Strain Sensors. , 2020, , .		6
44	A Vision-Based Collocated Actuation-Sensing Scheme for a Compliant Tendon-Driven Robotic Hand. , 2020, , .		4
45	Efficient Bayesian Exploration for Soft Morphology-Action Co-optimization. , 2020, , .		8
46	First-Order Dynamic Modeling and Control of Soft Robots. Frontiers in Robotics and AI, 2020, 7, 95.	2.0	28
47	Sensorized Phantom For Characterizing Large Area Deformation of Soft Bodies for Medical Applications. , 2020, , .		3
48	Large-scale automated investigation of free-falling paper shapes via iterative physical experimentation. Nature Machine Intelligence, 2020, 2, 68-75.	8.3	11
49	Electronic skins and machine learning for intelligent soft robots. Science Robotics, 2020, 5, .	9.9	339
50	Towards Growing Robots: A Piecewise Morphology-Controller Co-adaptation Strategy for Legged Locomotion. Lecture Notes in Computer Science, 2020, , 357-368.	1.0	2
51	Joint Entropy-Based Morphology Optimization of Soft Strain Sensor Networks for Functional Robustness. IEEE Sensors Journal, 2020, 20, 10801-10810.	2.4	18
52	Self-supervised Learning Through Scene Observation for Selective Item Identification in Conveyor Belt Systems. Lecture Notes in Computer Science, 2020, , 171-183.	1.0	0
53	Real World Bayesian Optimization Using Robots to Clean Liquid Spills. Lecture Notes in Computer Science, 2020, , 196-208.	1.0	1
54	Gaussian process inference modelling of dynamic robot control for expressive piano playing. , 2020, 15, e0237826.		0

#	Article	IF	CITATIONS
55	Gaussian process inference modelling of dynamic robot control for expressive piano playing. , 2020, 15, e0237826.		Ο
56	Gaussian process inference modelling of dynamic robot control for expressive piano playing. , 2020, 15, e0237826.		0
57	Gaussian process inference modelling of dynamic robot control for expressive piano playing. , 2020, 15, e0237826.		0
58	Physics driven behavioural clustering of free-falling paper shapes. PLoS ONE, 2019, 14, e0217997.	1.1	6
59	Gel-Based Soft Interfaces for Fastener Manipulation in Robotic Agile Assembly. , 2019, , .		Ο
60	Non-Destructive Robotic Assessment of Mango Ripeness via Multi-Point Soft Haptics. , 2019, , .		15
61	Reachability Improvement of a Climbing Robot Based on Large Deformations Induced by Tri-Tube Soft Actuators. Soft Robotics, 2019, 6, 483-494.	4.6	42
62	Model-Free Soft-Structure Reconstruction for Proprioception Using Tactile Arrays. IEEE Robotics and Automation Letters, 2019, 4, 2479-2484.	3.3	32
63	Improving Legged Robot Hopping by Using Coupling-Based Series Elastic Actuation. IEEE/ASME Transactions on Mechatronics, 2019, 24, 413-423.	3.7	16
64	Guest Editorial Focused Section on Soft Actuators, Sensors, and Components (SASC). IEEE/ASME Transactions on Mechatronics, 2019, 24, 1-4.	3.7	2
65	Ready Posture for Rapid Reaction of Badminton Robot Arm. , 2019, , .		Ο
66	Energy Harvesting in Soft Robot Locomotion with Complex Dynamics. , 2019, , .		2
67	Controllable and reversible tuning of material rigidity for robot applications. Materials Today, 2018, 21, 563-576.	8.3	158
68	A Variable Stiffness Robotic Probe for Soft Tissue Palpation. IEEE Robotics and Automation Letters, 2018, 3, 1168-1175.	3.3	30
69	Model-Free Design Optimization of a Hopping Robot and Its Comparison With a Human Designer. IEEE Robotics and Automation Letters, 2018, 3, 1245-1251.	3.3	23
70	Special issue on â€~Morphological computation in soft robotics'. Advanced Robotics, 2018, 32, 339-339.	1.1	1
71	Efficient and Stable Locomotion for Impulse-Actuated Robots Using Strictly Convex Foot Shapes. IEEE Transactions on Robotics, 2018, 34, 674-685.	7.3	7
72	Robotic Invention: Challenges and Perspectives for Model-Free Design Optimization of Dynamic Locomotion Robots. Springer Proceedings in Advanced Robotics, 2018, , 581-596.	0.9	2

#	Article	IF	CITATIONS
73	Achieving Flexible Assembly Using Autonomous Robotic Systems. , 2018, , .		2
74	Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring. Sensors, 2018, 18, 3822.	2.1	42
75	An anthropomorphic soft skeleton hand exploiting conditional models for piano playing. Science Robotics, 2018, 3, .	9.9	58
76	Morphological Adaptation in an Energy Efficient Vibration-Based Robot. , 2018, , .		2
77	Tactile Sensing Applied to the Universal Gripper Using Conductive Thermoplastic Elastomer. Soft Robotics, 2018, 5, 512-526.	4.6	32
78	Data Synthesization for Classification in Autonomous Robotic Grasping System Using â€~Catalogue'-Style Images. Lecture Notes in Computer Science, 2018, , 40-51.	1.0	0
79	Achieving Robotically Peeled Lettuce. IEEE Robotics and Automation Letters, 2018, 3, 4337-4342.	3.3	10
80	Tack and deformation based sensorised gripping using conductive hot melt adhesive. , 2018, , .		5
81	Soft morphological processing of tactile stimuli for autonomous category formation. , 2018, , .		18
82	Collision-based energetic comparison of rolling and hopping over obstacles. PLoS ONE, 2018, 13, e0194375.	1.1	0
83	Lessons on the Reality-Gap: Iterations between Virtual and Real Robots. Proceedings of International Conference on Artificial Life and Robotics, 2018, 23, 153-156.	0.1	0
84	Soft-Material Robotics. Foundations and Trends in Robotics, 2017, 5, 191-259.	5.0	42
85	Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots. Artificial Life, 2017, 23, 169-185.	1.0	46
86	Discrete Foot Shape Changes Improve Dynamics of a Hopping Robot. Springer Proceedings in Advanced Robotics, 2017, , 113-122.	0.9	2
87	Energy-Efficient Monopod Running With a Large Payload Based on Open-Loop Parallel Elastic Actuation. IEEE Transactions on Robotics, 2017, 33, 102-113.	7.3	18
88	Localized differential sensing of soft deformable surfaces. , 2017, , .		13
89	Design Principles for Soft-Rigid Hybrid Manipulators. Biosystems and Biorobotics, 2017, , 87-94.	0.2	20
90	Real-World, Real-Time Robotic Grasping with Convolutional Neural Networks. Lecture Notes in Computer Science, 2017, , 617-626.	1.0	26

#	Article	IF	CITATIONS
91	The trade-off between morphology and control in the co-optimized design of robots. PLoS ONE, 2017, 12, e0186107.	1.1	24
92	3D Printed Sensorized Soft Robotic Manipulator Design. Lecture Notes in Computer Science, 2017, , 627-636.	1.0	3
93	Energy efficient hopping with Hill-type muscle properties on segmented legs. Bioinspiration and Biomimetics, 2016, 11, 036002.	1.5	2
94	News and Views: Soft Solutions for Hard Problems [Society News]. IEEE Robotics and Automation Magazine, 2016, 23, 125-127.	2.2	0
95	Soft Robotics and Morphological Computation [From the Guest Editors]. IEEE Robotics and Automation Magazine, 2016, 23, 28-29.	2.2	5
96	Biologically Inspired Robotics. Springer Handbooks, 2016, , 2015-2034.	0.3	22
97	A Biologically Inspired Soft Robotic Hand Using Chopsticks for Grasping Tasks. Lecture Notes in Computer Science, 2016, , 195-206.	1.0	5
98	Simulation of forward hopping dynamics in robots and animals using a template with a circular foot and impulsive actuation. , 2016, , .		3
99	A design concept of parallel elasticity extracted from biological muscles for engineered actuators. Bioinspiration and Biomimetics, 2016, 11, 056009.	1.5	5
100	Adaptation of sensor morphology: an integrative view of perception from biologically inspired robotics perspective. Interface Focus, 2016, 6, 20160016.	1.5	30
101	Enhancement of finger motion range with compliant anthropomorphic joint design. Bioinspiration and Biomimetics, 2016, 11, 026001.	1.5	28
102	Improving Efficiency for an Open-Loop-Controlled Locomotion With a Pulsed Actuation. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1581-1591.	3.7	8
103	Determinants for Stiffness Adjustment Mechanisms. Journal of Intelligent and Robotic Systems: Theory and Applications, 2016, 82, 435-454.	2.0	21
104	The Solving by Building Approach Based on Thermoplastic Adhesives. Springer Tracts in Advanced Robotics, 2016, , 221-236.	0.3	0
105	Parallel elastic actuation for efficient large payload locomotion. , 2015, , .		7
106	Morphological Evolution of Physical Robots through Model-Free Phenotype Development. PLoS ONE, 2015, 10, e0128444.	1.1	75
107	A self organization approach to goal-directed multimodal locomotion based on Attractor Selection Mechanism. , 2015, , .		0
108	Thinking About Where We Are, and Beyond, by Looking Back. Soft Robotics, 2015, 2, 91-92.	4.6	0

4

#	Article	IF	CITATIONS
109	Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics. Bioinspiration and Biomimetics, 2015, 10, 025004.	1.5	19
110	An extendible reconfigurable robot based on hot melt adhesives. Autonomous Robots, 2015, 39, 87-100.	3.2	10
111	Improving energy efficiency of hopping locomotion by using a variable stiffness actuator. IEEE/ASME Transactions on Mechatronics, 2015, , 1-1.	3.7	22
112	Deformation in Soft-Matter Robotics: A Categorization and Quantitative Characterization. IEEE Robotics and Automation Magazine, 2015, 22, 125-139.	2.2	79
113	A dragline-forming mobile robot inspired by spiders. Bioinspiration and Biomimetics, 2014, 9, 016006.	1.5	27
114	Automatic building of a web-like structure based on thermoplastic adhesive. Bioinspiration and Biomimetics, 2014, 9, 036014.	1.5	3
115	From Spontaneous Motor Activity to Coordinated Behaviour: A Developmental Model. PLoS Computational Biology, 2014, 10, e1003653.	1.5	29
116	SVAS3: Strain Vector Aided Sensorization of Soft Structures. Sensors, 2014, 14, 12748-12770.	2.1	58
117	Guided Self-Organization in a Dynamic Embodied System Based on Attractor Selection Mechanism. Entropy, 2014, 16, 2592-2610.	1.1	17
118	Soft Robotics Education. Soft Robotics, 2014, 1, 202-212.	4.6	18
119	Self-stable one-legged hopping using a curved foot. , 2014, , .		11
120	Modelling of continuous dragline formation in a mobile robot. , 2014, , .		0
121	Linear Multimodal Actuation Through Discrete Coupling. IEEE/ASME Transactions on Mechatronics, 2014, 19, 827-839.	3.7	18
122	Mechanics and energetics in tool manufacture and use: a synthetic approach. Journal of the Royal Society Interface, 2014, 11, 20140827.	1.5	22
123	Motion pattern discrimination for soft robots with morphologically flexible sensors. , 2014, , .		14
124	An Energy-Efficient Hopping Robot Based on Free Vibration of a Curved Beam. IEEE/ASME Transactions on Mechatronics, 2014, 19, 300-311.	3.7	52
125	Minimalistic Models of an Energy-Efficient Vertical-Hopping Robot. IEEE Transactions on Industrial Electronics, 2014, 61, 1053-1062.	5.2	30

Automatic real-world assembly of machine-designed structures. , 2014, , .

Γυμιγα Ιιda

#	Article	IF	CITATIONS
127	Soft Robotics on the Move: Scientific Networks, Activities, and Future Challenges. Soft Robotics, 2014, 1, 154-158.	4.6	28
128	Cognition from the bottom up: on biological inspiration, body morphology, and soft materials. Trends in Cognitive Sciences, 2014, 18, 404-413.	4.0	88
129	Flexible Self-reconfigurable Robots Based on Thermoplastic Adhesives. Springer Tracts in Advanced Robotics, 2014, , 193-204.	0.3	0
130	Physical Connection and Disconnection Control Based on Hot Melt Adhesives. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1397-1409.	3.7	29
131	Soft Robotics [TC Spotlight]. IEEE Robotics and Automation Magazine, 2013, 20, 24-95.	2.2	17
132	Robotics education: A case study in soft-bodied locomotion. , 2013, , .		5
133	In situ thermoplastic thread formation for robot built structures. , 2013, , .		1
134	Minimalistic models of an energy efficient vertical hopping robot. , 2013, , .		1
135	Self-organization of reflexive behavior from spontaneous motor activity. Biological Cybernetics, 2013, 107, 25-37.	0.6	17
136	Twitching in Sensorimotor Development from Sleeping Rats to Robots. Current Biology, 2013, 23, R532-R537.	1.8	112
137	Design and control of a climbing robot based on hot melt adhesion. Robotics and Autonomous Systems, 2013, 61, 616-625.	3.0	30
138	Morphological Computation of Multi-Gaited Robot Locomotion Based on Free Vibration. Artificial Life, 2013, 19, 97-114.	1.0	21
139	Free-space locomotion with thread formation. , 2013, , .		1
140	Large-Payload Climbing in Complex Vertical Environments Using Thermoplastic Adhesive Bonds. IEEE Transactions on Robotics, 2013, 29, 863-874.	7.3	32
141	Preloaded hopping with linear multi-modal actuation. , 2013, , .		4
142	Active Sensing System with In Situ Adjustable Sensor Morphology. PLoS ONE, 2013, 8, e84090.	1.1	39
143	Exploiting passive dynamics for robot throwing task. , 2012, , .		2
144	Exploiting free vibration of an elastic beam for stable running locomotion. , 2012, , .		3

9

#	Article	IF	CITATIONS
145	Linear multi-modal actuation through discrete coupling. , 2012, , .		5
146	Climbing vertical terrains with a self-contained robot. , 2012, , .		3
147	Resonance based multi-gaited robot locomotion. , 2012, , .		9
148	Design considerations for attachment and detachment in robot climbing with hot melt adhesives. , 2012, , .		1
149	Robotic body extension based on Hot Melt Adhesives. , 2012, , .		16
150	Self-organization of spinal reflexes through soft musculoskeletal interactions. , 2012, , .		0
151	The challenges ahead for bio-inspired 'soft' robotics. Communications of the ACM, 2012, 55, 76-87.	3.3	342
152	Enhanced robotic body extension with modular units. , 2012, , .		10
153	Towards "soft" self-reconfigurable robots. , 2012, , .		4
154	Legged robot locomotion based on free vibration. , 2012, , .		4
155	Self-organization of Spinal Reflexes Involving Homonymous, Antagonist and Synergistic Interactions. Lecture Notes in Computer Science, 2012, , 269-278.	1.0	3
156	Embodied Cognition in Psychological Therapy. Journal of Cognitive Science, 2012, 13, 431-452.	0.2	1
157	International Collaboration on Robotics in Europe. Journal of the Robotics Society of Japan, 2012, 30, 1026-1027.	0.0	0
158	Trajectory Control Based on Discrete Full-Range Dynamics. Journal of Robotics and Mechatronics, 2012, 24, 612-619.	0.5	0
159	Hopping robot based on free vibration of an elastic curved beam. , 2011, , .		8
160	Stable dynamic walking over uneven terrain. International Journal of Robotics Research, 2011, 30, 265-279.	5.8	179
161	Soft Robotics: Challenges and Perspectives. Procedia Computer Science, 2011, 7, 99-102.	1.2	174
162	<i>Flying Insects and Robots</i> . Dario Floreano, Jean-Christophe Zufferey, Mandyam V. Srinivasan, and Charlie Elington (Eds.). (2009, Springer.) \$119, 328 pages Artificial Life, 2011, 18, 125-127.	1.0	1

#	Article	IF	CITATIONS
163	Design and Control of a Novel Visco-elastic Braking Mechanism Using HMA. Lecture Notes in Computer Science, 2011, , 416-425.	1.0	1
164	A climbing robot based on Hot Melt Adhesion. , 2011, , .		2
165	Minimalistic control of biped walking in rough terrain. Autonomous Robots, 2010, 28, 355-368.	3.2	63
166	Towards Bipedal Jogging as a Natural Result of Optimizing Walking Speed for Passively Compliant Three-Segmented Legs. International Journal of Robotics Research, 2009, 28, 257-265.	5.8	40
167	Evaluation of the effects of the shape of the artificial hand on the quality of the interaction. , 2009, , .		0
168	Toward a human-like biped robot with compliant legs. Robotics and Autonomous Systems, 2009, 57, 139-144.	3.0	59
169	Minimalistic control of a compass gait robot in rough terrain. , 2009, , .		17
170	Learning Legged Locomotion. , 2009, , 21-33.		1
171	Biologically Inspired Motor Control for Underactuated Robots – Trends and Challenges. Lecture Notes in Control and Information Sciences, 2009, , 145-154.	0.6	4
172	Bipedal walking and running with spring-like biarticular muscles. Journal of Biomechanics, 2008, 41, 656-667.	0.9	118
173	Enlarging regions of stable running with segmented legs. , 2008, , .		13
174	Motor control optimization of compliant one-legged locomotion in rough terrain. , 2007, , .		7
175	Autonomous Robots: From Biological Inspiration to Implementation and Control. George A. Bekey. (2005, MIT Press.) Hardcover, 577 pages. ISBN 0262025787. Artificial Life, 2007, 13, 419-421.	1.0	6
176	Bipedal Walking and Running with Compliant Legs. Proceedings - IEEE International Conference on Robotics and Automation, 2007, , .	0.0	36
177	Self-Organization, Embodiment, and Biologically Inspired Robotics. Science, 2007, 318, 1088-1093.	6.0	956
178	Al in Locomotion: Challenges and Perspectives of Underactuated Robots. , 2007, , 134-143.		3
179	Al in the 21st Century – With Historical Reflections. , 2007, , 1-8.		4
180	Morphological computation for adaptive behavior and cognition. International Congress Series, 2006, 1291, 22-29.	0.2	130

#	ARTICLE	IF	CITATIONS
181	Designing Intelligent Robots-On the Implications of Embodiment Journal of the Robotics Society of Japan, 2006, 24, 783-790.	0.0	21
182	Sensing through body dynamics. Robotics and Autonomous Systems, 2006, 54, 631-640.	3.0	50
183	Finding Resonance: Adaptive Frequency Oscillators for Dynamic Legged Locomotion. , 2006, , .		57
184	Running and Walking with Compliant Legs. , 2006, , 383-401.		30
185	New Robotics: Design Principles for Intelligent Systems. Artificial Life, 2005, 11, 99-120.	1.0	104
186	Embodied Artificial Intelligence: Trends and Challenges. Lecture Notes in Computer Science, 2004, , 1-26.	1.0	46
187	Self-Stabilization and Behavioral Diversity of Embodied Adaptive Locomotion. Lecture Notes in Computer Science, 2004, , 119-129.	1.0	16
188	Biologically inspired visual odometer for navigation of a flying robot. Robotics and Autonomous Systems, 2003, 44, 201-208.	3.0	55
189	<title>Navigation in an autonomous flying robot by using a biologically inspired visual
odometer</title> . , 2000, , .		17
190	Behavior Learning of Face Robot Based on the Characteristics of Human Instruction Journal of the Robotics Society of Japan, 2000, 18, 839-846.	0.0	3
191	Behavior learning of a face robot based on the characteristics of human instruction. Advanced Robotics, 1998, 13, 283-284.	1.1	1
192	Design and control of a pendulum driven hopping robot. , 0, , .		21
193	Exploiting body dynamics for controlling a running quadruped robot. , 0, , .		40
194	Soft Manipulators and Grippers: A Review. Frontiers in Robotics and AI, 0, 3, .	2.0	403
195	Power-efficient adaptive behavior through a shape-changing elastic robot. Adaptive Behavior, 0, , 105971232199018.	1.1	0
196	Exploiting body dynamics for controlling a running quadruped robot. , 0, , .		23
197	How the Environment Shapes Tactile Sensing: Understanding the Relationship Between Tactile Filters and Surrounding Environment. Frontiers in Robotics and AI, O, 9, .	2.0	0