P James Schuck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2033196/publications.pdf

Version: 2024-02-01

147726 138417 4,533 60 31 58 citations g-index h-index papers 60 60 60 6040 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10917-10921.	3.3	626
2	Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nature Nanotechnology, 2014, 9, 300-305.	15.6	499
3	Controlled Synthesis and Single-Particle Imaging of Bright, Sub-10 nm Lanthanide-Doped Upconverting Nanocrystals. ACS Nano, 2012, 6, 2686-2692.	7.3	296
4	Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide. Nature Communications, 2015, 6, 7993.	5. 8	204
5	Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nature Photonics, 2018, 12, 402-407.	15.6	200
6	Continuous-wave upconverting nanoparticle microlasers. Nature Nanotechnology, 2018, 13, 572-577.	15.6	188
7	Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature, 2021, 589, 230-235.	13.7	167
8	Ultralow-threshold, continuous-wave upconverting lasing from subwavelength plasmons. Nature Materials, 2019, 18, 1172-1176.	13.3	160
9	Polariton panorama. Nanophotonics, 2020, 10, 549-577.	2.9	155
10	Future and challenges for hybrid upconversion nanosystems. Nature Photonics, 2019, 13, 828-838.	15.6	145
11	Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nature Nanotechnology, 2020, 15, 854-860.	15.6	134
12	Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging. ACS Nano, 2016, 10, 8423-8433.	7.3	122
13	Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nature Communications, 2018, 9, 3082.	5.8	120
14	Hyperspectral Nanoscale Imaging on Dielectric Substrates with Coaxial Optical Antenna Scan Probes Nano Letters, 2011, 11, 1201-1207.	4. 5	111
15	Concentrating and Recycling Energy in Lanthanide Codopants for Efficient and Spectrally Pure Emission: The Case of NaYF ₄ :Er ³⁺ /Tm ³⁺ Upconverting Nanocrystals. Journal of Physical Chemistry B, 2012, 116, 10561-10570.	1.2	102
16	Gold Nanocone Near-Field Scanning Optical Microscopy Probes. ACS Nano, 2011, 5, 2570-2579.	7.3	82
17	Apparent self-heating of individual upconverting nanoparticle thermometers. Nature Communications, 2018, 9, 4907.	5.8	82
	Ontically Discriminating Carrier-Induced Quasinarticle Band Can and Exciton Energy Renormalization		

Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"

display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml

#	Article	IF	Citations
19	Optical parametric amplification by monolayer transition metal dichalcogenides. Nature Photonics, 2021, 15, 6-10.	15.6	74
20	Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Science Advances, 2021, 7, .	4.7	73
21	Hot electrons go through the barrier. Nature Nanotechnology, 2013, 8, 799-800.	15.6	68
22	Programmable hyperbolic polaritons in van der Waals semiconductors. Science, 2021, 371, 617-620.	6.0	58
23	Energy Transfer Networks within Upconverting Nanoparticles Are Complex Systems with Collective, Robust, and History-Dependent Dynamics. Journal of Physical Chemistry C, 2019, 123, 2678-2689.	1.5	57
24	The ultrafast onset of exciton formation in 2D semiconductors. Nature Communications, 2020, 11 , 5277.	5.8	57
25	On Optical Dipole Moment and Radiative Recombination Lifetime of Excitons in WSe ₂ . Advanced Functional Materials, 2017, 27, 1601741.	7.8	44
26	Controlled Assembly of Upconverting Nanoparticles for Low-Threshold Microlasers and Their Imaging in Scattering Media. ACS Nano, 2020, 14, 1508-1519.	7.3	44
27	A single particle plasmon resonance study of 3D conical nanoantennas. Nanoscale, 2013, 5, 7861.	2.8	43
28	The important role of water in growth of monolayer transition metal dichalcogenides. 2D Materials, 2017, 4, 021024.	2.0	43
29	Continuous Wave Sum Frequency Generation and Imaging of Monolayer and Heterobilayer Two-Dimensional Semiconductors. ACS Nano, 2020, 14, 708-714.	7.3	41
30	Nanoscale lattice dynamics in hexagonal boron nitride moir \tilde{A} \otimes superlattices. Nature Communications, 2021, 12, 5741.	5.8	34
31	Chemical crystallography by serial femtosecond X-ray diffraction. Nature, 2022, 601, 360-365.	13.7	33
32	Anomalous Above-Gap Photoexcitations and Optical Signatures of Localized Charge Puddles in Monolayer Molybdenum Disulfide. ACS Nano, 2017, 11, 2115-2123.	7.3	29
33	Facile and quantitative estimation of strain in nanobubbles with arbitrary symmetry in 2D semiconductors verified using hyperspectral nano-optical imaging. Journal of Chemical Physics, 2020, 153, 024702.	1.2	27
34	Standardization of Methodology of Light-to-Heat Conversion Efficiency Determination for Colloidal Nanoheaters. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44556-44567.	4.0	27
35	Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles. Nanoscale, 2016, 8, 11611-11616.	2.8	24
36	Damage-Free Atomic Layer Etch of WSe ₂ : A Platform for Fabricating Clean Two-Dimensional Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1930-1942.	4.0	24

#	Article	IF	CITATIONS
37	Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2. Scientific Reports, 2017, 7, 16938.	1.6	23
38	Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nature Communications, 2022, 13, 542.	5.8	23
39	Strongly Quantum-Confined Blue-Emitting Excitons in Chemically Configurable Multiquantum Wells. ACS Nano, 2021, 15, 4085-4092.	7.3	21
40	Dry Transfer of van der Waals Crystals to Noble Metal Surfaces To Enable Characterization of Buried Interfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38218-38225.	4.0	20
41	Photostable and efficient upconverting nanocrystal-based chemical sensors. Optical Materials, 2018, 84, 345-353.	1.7	19
42	Anisotropic 2D excitons unveiled in organic–inorganic quantum wells. Materials Horizons, 2021, 8, 197-208.	6.4	17
43	Upconverting nanoparticle micro-lightbulbs designed for deep tissue optical stimulation and imaging. Biomedical Optics Express, 2018, 9, 4359.	1.5	16
44	Light-Driven Permanent Charge Separation across a Hybrid Zero-Dimensional/Two-Dimensional Interface. Journal of Physical Chemistry C, 2020, 124, 8000-8007.	1.5	14
45	Manipulation of Exciton Dynamics in Single-Layer WSe ₂ Using a Toroidal Dielectric Metasurface. Nano Letters, 2021, 21, 9930-9938.	4.5	14
46	Sizeâ€Dependent Photon Avalanching in Tm ³⁺ Doped LiYF ₄ Nano, Micro, and Bulk Crystals. Advanced Optical Materials, 2022, 10, .	3.6	13
47	Metalloâ€Hydrogelâ€Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1807612.	7.8	12
48	In-Plane Anisotropy in Biaxial ReS ₂ Crystals Probed by Nano-Optical Imaging of Waveguide Modes. ACS Photonics, 2022, 9, 443-451.	3.2	12
49	Surface-Sensitive Photon Avalanche Behavior Revealed by Single-Avalanching-Nanoparticle Imaging. Journal of Physical Chemistry C, 2021, 125, 23976-23982.	1.5	10
50	OD Nanocrystals as Lightâ€Driven, Localized Chargeâ€Injection Sources for the Contactless Manipulation of Atomically Thin 2D Materials. Advanced Photonics Research, 2021, 2, 2000151.	1.7	9
51	Nanoscale Optical Imaging of 2D Semiconductor Stacking Orders by Excitonâ€Enhanced Second Harmonic Generation. Advanced Optical Materials, 2022, 10, .	3.6	9
52	A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Frontiers of Physics, 2016, 11, 1.	2.4	8
53	Sub-20 nm laser ablation for lithographic dry development. Nanotechnology, 2012, 23, 185301.	1.3	7
54	Predicting the impact of temperature dependent multi-phonon relaxation processes on the photon avalanche behavior in Tm3+: NaYF4 nanoparticles. Optical Materials: X, 2021, 12, 100102.	0.3	6

#	Article	IF	CITATIONS
55	(INVITED) Infrared-to-ultraviolet upconverting nanoparticles for COVID-19-related disinfection applications. Optical Materials: X, 2021, 12, 100099.	0.3	6
56	Elucidating heterogeneity in nanoplasmonic structures using nonlinear photon localization microscopy. Journal of Optics (United Kingdom), 2014, 16, 114014.	1.0	3
57	Near-Field Imaging: Revealing Optical Properties of Reduced-Dimensionality Materials at Relevant Length Scales (Adv. Mater. 38/2015). Advanced Materials, 2015, 27, 5692-5692.	11.1	2
58	Selectively accessing the hotspots of optical nanoantennas by self-aligned dry laser ablation. Nanoscale, 2020, 12, 19170-19177.	2.8	2
59	Room-temperature continuous-wave upconverting micro- and nanolasing for bio-optofluidics. EPJ Web of Conferences, 2020, 238, 07005.	0.1	0
60	Near-field nanoscopy of excitons and ultrafast interlayer dynamics in van der Waals crystals., 2022,,.		0