Fiona C Meldrum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2032988/publications.pdf

Version: 2024-02-01

166 papers 14,131 citations

20817 60 h-index 20961 115 g-index

171 all docs

171 docs citations

171 times ranked

12604 citing authors

#	Article	IF	CITATIONS
1	Micron-sized biogenic and synthetic hollow mineral spheres occlude additives within single crystals. Faraday Discussions, 2022, 235, 536-550.	3.2	4
2	Starfish grow extraordinary crystals. Science, 2022, 375, 615-616.	12.6	8
3	Magnesium Ions Direct the Solidâ€State Transformation of Amorphous Calcium Carbonate Thin Films to Aragonite, Magnesiumâ€Calcite, or Dolomite. Advanced Functional Materials, 2022, 32, .	14.9	10
4	Positively Charged Additives Facilitate Incorporation in Inorganic Single Crystals. Chemistry of Materials, 2022, 34, 4910-4923.	6.7	10
5	Calcite Kinetics for Spiral Growth and Two-Dimensional Nucleation. Crystal Growth and Design, 2022, 22, 4431-4436.	3.0	3
6	Active sites for ice nucleation differ depending on nucleation mode. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
7	Dichroic Calcite Reveals the Pathway from Additive Binding to Occlusion. Crystal Growth and Design, 2021, 21, 3746-3755.	3.0	5
8	Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. Frontiers in Medical Technology, 2021, 3, 722501.	2.5	9
9	Exploiting Confinement to Study the Crystallization Pathway of Calcium Sulfate. Advanced Functional Materials, 2021, 31, 2107312.	14.9	11
10	Incorporation of nanogels within calcite single crystals for the storage, protection and controlled release of active compounds. Chemical Science, 2021, 12, 9839-9850.	7.4	12
11	An innovative data processing method for studying nanoparticle formation in droplet microfluidics using X-rays scattering. Lab on A Chip, 2021, 21, 4498-4506.	6.0	10
12	Solvent-Mediated Enhancement of Additive-Controlled Crystallization. Crystal Growth and Design, 2021, 21, 7104-7115.	3.0	9
13	Ptychographic X-ray tomography reveals additive zoning in nanocomposite single crystals. Chemical Science, 2020, 11, 355-363.	7.4	17
14	Intermolecular channels direct crystal orientation in mineralized collagen. Nature Communications, 2020, 11, 5068.	12.8	90
15	Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes. Lab on A Chip, 2020, 20, 2954-2964.	6.0	3
16	Dynamic Crystallization Pathways of Polymorphic Pharmaceuticals Revealed in Segmented Flow with Inline Powder X-ray Diffraction. Analytical Chemistry, 2020, 92, 7754-7761.	6.5	12
17	A facile method for generating worm-like micelles with controlled lengths and narrow polydispersity. Chemical Communications, 2020, 56, 7463-7466.	4.1	9
18	Investigating the Nucleation Kinetics of Calcium Carbonate Using a Zero-Water-Loss Microfluidic Chip. Crystal Growth and Design, 2020, 20, 2787-2795.	3.0	9

#	Article	IF	Citations
19	Crystallization in Confinement. Advanced Materials, 2020, 32, e2001068.	21.0	158
20	Efficient occlusion of oil droplets within calcite crystals. Chemical Science, 2019, 10, 8964-8972.	7.4	18
21	Superâ€Resolution Microscopy Reveals Shape and Distribution of Dislocations in Singleâ€Crystal Nanocomposites. Angewandte Chemie, 2019, 131, 17489-17495.	2.0	0
22	Superâ€Resolution Microscopy Reveals Shape and Distribution of Dislocations in Single rystal Nanocomposites. Angewandte Chemie - International Edition, 2019, 58, 17328-17334.	13.8	8
23	Skin-Deep Surface Patterning of Calcite. Chemistry of Materials, 2019, 31, 8725-8733.	6.7	10
24	Visualization of the effect of additives on the nanostructures of individual bio-inspired calcite crystals. Chemical Science, 2019, 10, 1176-1185.	7.4	26
25	Spatially Controlled Occlusion of Polymerâ€Stabilized Gold Nanoparticles within ZnO. Angewandte Chemie, 2019, 131, 4346-4351.	2.0	9
26	Model Anionic Block Copolymer Vesicles Provide Important Design Rules for Efficient Nanoparticle Occlusion within Calcite. Journal of the American Chemical Society, 2019, 141, 2557-2567.	13.7	63
27	What Dictates the Spatial Distribution of Nanoparticles within Calcite?. Journal of the American Chemical Society, 2019, 141, 2481-2489.	13.7	37
28	High-speed imaging of ice nucleation in water proves the existence of active sites. Science Advances, 2019, 5, eaav4316.	10.3	87
29	Spatially Controlled Occlusion of Polymerâ€Stabilized Gold Nanoparticles within ZnO. Angewandte Chemie - International Edition, 2019, 58, 4302-4307.	13.8	35
30	How Many Phosphoric Acid Units Are Required to Ensure Uniform Occlusion of Sterically Stabilized Nanoparticles within Calcite?. Angewandte Chemie - International Edition, 2019, 58, 8692-8697.	13.8	27
31	How Many Phosphoric Acid Units Are Required to Ensure Uniform Occlusion of Sterically Stabilized Nanoparticles within Calcite?. Angewandte Chemie, 2019, 131, 8784-8789.	2.0	7
32	Droplet Microfluidics XRD Identifies Effective Nucleating Agents for Calcium Carbonate. Advanced Functional Materials, 2019, 29, 1808172.	14.9	31
33	Hydroxyl-rich macromolecules enable the bio-inspired synthesis of single crystal nanocomposites. Nature Communications, 2019, 10, 5682.	12.8	43
34	Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites. Nature Communications, 2019, 10, 206.	12.8	128
35	Influence of the Structure of Block Copolymer Nanoparticles on the Growth of Calcium Carbonate. Chemistry of Materials, 2018, 30, 7091-7099.	6.7	22
36	Anionic block copolymer vesicles act as Trojan horses to enable efficient occlusion of guest species into host calcite crystals. Chemical Science, 2018, 9, 8396-8401.	7.4	37

#	Article	IF	Citations
37	Amino Acid Assisted Incorporation of Dye Molecules within Calcite Crystals. Angewandte Chemie - International Edition, 2018, 57, 8623-8628.	13.8	36
38	Confinement generates single-crystal aragonite rods at room temperature. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7670-7675.	7.1	61
39	Amino Acid Assisted Incorporation of Dye Molecules within Calcite Crystals. Angewandte Chemie, 2018, 130, 8759-8764.	2.0	1
40	Combinatorial Evolution of Biomimetic Magnetite Nanoparticles. Advanced Functional Materials, 2017, 27, 1604863.	14.9	19
41	Synchrotron FTIR mapping of mineralization in a microfluidic device. Lab on A Chip, 2017, 17, 1616-1624.	6.0	24
42	Physical Confinement Promoting Formation of Cu ₂ O–Au Heterostructures with Au Nanoparticles Entrapped within Crystalline Cu ₂ O Nanorods. Chemistry of Materials, 2017, 29, 555-563.	6.7	20
43	Observing the formation of ice and organic crystals in active sites. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 810-815.	7.1	66
44	Using Confinement To Study the Crystallization Pathway of Calcium Carbonate. Crystal Growth and Design, 2017, 17, 6787-6792.	3.0	22
45	Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device. Small, 2017, 13, 1702154.	10.0	29
46	The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals. Angewandte Chemie - International Edition, 2017, 56, 11885-11890.	13.8	46
47	The Effect of Additives on the Early Stages of Growth of Calcite Single Crystals. Angewandte Chemie, 2017, 129, 12047-12052.	2.0	12
48	The role of phase separation and related topography in the exceptional ice-nucleating ability of alkali feldspars. Physical Chemistry Chemical Physics, 2017, 19, 31186-31193.	2.8	63
49	Incorporation of additives in single crystals – bio-inspired approach. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, a346-a346.	0.1	0
50	Structure and Properties of Nanocomposites Formed by the Occlusion of Block Copolymer Worms and Vesicles Within Calcite Crystals. Advanced Functional Materials, 2016, 26, 1382-1392.	14.9	63
51	Tuning hardness in calcite by incorporation of amino acids. Nature Materials, 2016, 15, 903-910.	27.5	183
52	A reproducible approach to the assembly of microcapillaries for double emulsion production. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	16
53	Polymer-Directed Assembly of Single Crystal Zinc Oxide/Magnetite Nanocomposites under Atmospheric and Hydrothermal Conditions. Chemistry of Materials, 2016, 28, 7528-7536.	6.7	25
54	Rapid Screening of Calcium Carbonate Precipitation in the Presence of Amino Acids: Kinetics, Structure, and Composition. Crystal Growth and Design, 2016, 16, 5174-5183.	3.0	24

#	Article	IF	Citations
55	Effect of Nanoscale Confinement on the Crystallization of Potassium Ferrocyanide. Crystal Growth and Design, 2016, 16, 5403-5411.	3.0	22
56	Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains. Journal of the American Chemical Society, 2016, 138, 11734-11742.	13.7	67
57	Cooperative Effects of Confinement and Surface Functionalization Enable the Formation of Au/Cu ₂ O Metal–Semiconductor Heterostructures. Crystal Growth and Design, 2016, 16, 6804-6811.	3.0	9
58	3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite. Nature Communications, 2016, 7, 13524.	12.8	40
59	Learning from sea shells – bio-inspired approaches toward mesoscale architectures in functional spinel oxides. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s55-s56.	0.1	1
60	Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers. Nature Communications, 2016, 7, 11878.	12.8	41
61	Combinatorial microfluidic droplet engineering for biomimetic material synthesis. Science Advances, 2016, 2, e1600567.	10.3	67
62	Direct observation of mineral–organic composite formation reveals occlusion mechanism. Nature Communications, 2016, 7, 10187.	12.8	110
63	Rapid preparation of highly reliable PDMS double emulsion microfluidic devices. RSC Advances, 2016, 6, 25927-25933.	3.6	24
64	Phosphonic Acid-Functionalized Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly: Synthesis, Characterization, and Occlusion into Calcite Crystals. Macromolecules, 2016, 49, 192-204.	4.8	58
65	Three-dimensional imaging of dislocation propagation during crystal growth and dissolution. Nature Materials, 2015, 14, 780-784.	27.5	143
66	Precipitation of Amorphous Calcium Oxalate in Aqueous Solution. Chemistry of Materials, 2015, 27, 3999-4007.	6.7	53
67	The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization. Advanced Materials, 2015, 27, 7395-7400.	21.0	40
68	Bioinspired Synthesis of Large-Pore, Mesoporous Hydroxyapatite Nanocrystals for the Controlled Release of Large Pharmaceutics. Crystal Growth and Design, 2015, 15, 723-731.	3.0	32
69	Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349, aaa6760.	12.6	1,467
70	Is Ice Nucleation from Supercooled Water Insensitive to Surface Roughness?. Journal of Physical Chemistry C, 2015, 119, 1164-1169.	3.1	85
71	Genetic Algorithmâ€Guided Discovery of Additive Combinations That Direct Quantum Dot Assembly. Advanced Materials, 2015, 27, 223-227.	21.0	14
72	Dehydration and crystallization of amorphous calcium carbonate in solution and in air. Nature Communications, 2014, 5, 3169.	12.8	265

#	Article	IF	Citations
73	Systematic Study of the Effects of Polyamines on Calcium Carbonate Precipitation. Chemistry of Materials, 2014, 26, 2703-2711.	6.7	72
74	Bio-inspired formation of functional calcite/metal oxide nanoparticle composites. Nanoscale, 2014, 6, 852-859.	5.6	35
75	A critical analysis of calcium carbonate mesocrystals. Nature Communications, 2014, 5, 4341.	12.8	122
76	Oxygen Spectroscopy and Polarization-Dependent Imaging Contrast (PIC)-Mapping of Calcium Carbonate Minerals and Biominerals. Journal of Physical Chemistry B, 2014, 118, 8449-8457.	2.6	60
77	Confinement Increases the Lifetimes of Hydroxyapatite Precursors. Chemistry of Materials, 2014, 26, 5830-5838.	6.7	48
78	Efficient Selection of Biomineralizing DNA Aptamers Using Deep Sequencing and Population Clustering. ACS Nano, 2014, 8, 387-395.	14.6	33
79	Confinement stabilises single crystal vaterite rods. Chemical Communications, 2014, 50, 4729-4732.	4.1	43
80	Correlation between Anisotropy and Lattice Distortions in Single Crystal Calcite Nanowires Grown in Confinement. Small, 2014, 10, 2697-2702.	10.0	8
81	One-pot synthesis of an inorganic heterostructure: uniform occlusion of magnetite nanoparticles within calcite single crystals. Chemical Science, 2014, 5, 738-743.	7.4	75
82	Colouring crystals with inorganic nanoparticles. Chemical Communications, 2014, 50, 67-69.	4.1	48
83	The role of poly(aspartic acid) in the precipitation of calcium phosphate in confinement. Journal of Materials Chemistry B, 2013, 1, 6586.	5.8	67
84	Nanoscale Confinement Controls the Crystallization of Calcium Phosphate: Relevance to Bone Formation. Chemistry - A European Journal, 2013, 19, 14918-14924.	3.3	95
85	Simple Photosystem II Water Oxidation Centre Analogues in Visible Light Oxygen and H ⁺ Generation. Small, 2013, 9, 61-66.	10.0	12
86	Solid state crystallization of amorphous calcium carbonate nanoparticles leads to polymorph selectivity. CrystEngComm, 2013, 15, 697-705.	2.6	21
87	The Effect of Additives on Amorphous Calcium Carbonate (ACC): Janus Behavior in Solution and the Solid State. Advanced Functional Materials, 2013, 23, 1575-1585.	14.9	95
88	Elucidating Mechanisms of Diffusionâ€Based Calcium Carbonate Synthesis Leads to Controlled Mesocrystal Formation. Advanced Functional Materials, 2013, 23, 1965-1973.	14.9	114
89	Freeze-drying yields stable and pure amorphous calcium carbonate (ACC). Chemical Communications, 2013, 49, 3134.	4.1	60
90	Confinement Leads to Control over Calcium Sulfate Polymorph. Advanced Functional Materials, 2013, 23, 5615-5623.	14.9	56

#	Article	IF	Citations
91	Formation and Structure of Calcium Carbonate Thin Films and Nanofibers Precipitated in the Presence of Poly(Allylamine Hydrochloride) and Magnesium Ions. Chemistry of Materials, 2013, 25, 4994-5003.	6.7	39
92	Characterization of Preferred Crystal Nucleation Sites on Mica Surfaces. Crystal Growth and Design, 2013, 13, 1915-1925.	3.0	16
93	High-Magnesian Calcite Mesocrystals: A Coordination Chemistry Approach. Journal of the American Chemical Society, 2012, 134, 1367-1373.	13.7	65
94	Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3699-3704.	7.1	277
95	In Situ Study of the Precipitation and Crystallization of Amorphous Calcium Carbonate (ACC). Crystal Growth and Design, 2012, 12, 1212-1217.	3.0	61
96	Topographical Control of Crystal Nucleation. Crystal Growth and Design, 2012, 12, 750-755.	3.0	49
97	Calcium carbonate polymorph control using droplet-based microfluidics. Biomicrofluidics, 2012, 6, 22001-2200110.	2.4	43
98	A new precipitation pathway for calcium sulfate dihydrate (gypsum) via amorphous and hemihydrate intermediates. Chemical Communications, 2012, 48, 504-506.	4.1	143
99	The use of cationic surfactants to control the structure of zinc oxide films prepared by chemical vapour deposition. Chemical Communications, 2012, 48, 1490-1492.	4.1	27
100	Impurities in pluronic triblock copolymers can induce the formation of calcite mesocrystals. Chemical Geology, 2012, 294-295, 259-262.	3.3	3
101	Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptidesâ€"relevance to biomineralization. Faraday Discussions, 2012, 159, 327.	3.2	47
102	Additives stabilize calcium sulfate hemihydrate (bassanite) in solution. Journal of Materials Chemistry, 2012, 22, 22055.	6.7	73
103	Think Positive: Phase Separation Enables a Positively Charged Additive to Induce Dramatic Changes in Calcium Carbonate Morphology. Advanced Functional Materials, 2012, 22, 907-915.	14.9	128
104	Early Stages of Crystallization of Calcium Carbonate Revealed in Picoliter Droplets. Journal of the American Chemical Society, 2011, 133, 5210-5213.	13.7	105
105	An artificial biomineral formed by incorporation of copolymer micelles in calcite crystals. Nature Materials, 2011, 10, 890-896.	27.5	248
106	Biopolymer stabilized nanoparticles as co-catalysts for photocatalytic water oxidations. Polymer Chemistry, 2011, 2, 1375.	3.9	9
107	General Route to Functional Metal Oxide Nanosuspensions, Enzymatically Deshelled Nanoparticles, and Their Application in Photocatalytic Water Splitting. Small, 2011, 7, 869-873.	10.0	8
108	Synthesis of Macroporous Calcium Carbonate/Magnetite Nanocomposites and their Application in Photocatalytic Water Splitting. Small, 2011, 7, 2168-2172.	10.0	20

#	Article	IF	Citations
109	Nanocomposites: Synthesis of Macroporous Calcium Carbonate/Magnetite Nanocomposites and their Application in Photocatalytic Water Splitting (Small 15/2011). Small, 2011, 7, 2126-2126.	10.0	0
110	Porous Single Crystals of Calcite from Colloidal Crystal Templates: ACC Is Not Required for Nanoscale Templating. Advanced Functional Materials, 2011, 21, 948-954.	14.9	36
111	Capillarity Creates Singleâ€Crystal Calcite Nanowires from Amorphous Calcium Carbonate. Angewandte Chemie - International Edition, 2011, 50, 12572-12577.	13.8	90
112	Amorphous Calcium Carbonate is Stabilized in Confinement. Advanced Functional Materials, 2010, 20, 2108-2115.	14.9	157
113	Biomineralization: Amorphous Calcium Carbonate is Stabilized in Confinement (Adv. Funct. Mater.) Tj ETQq1 1 0.	.784314 r	gBT /Overloc
114	Bioâ€Inspired Synthesis and Mechanical Properties of Calcite–Polymer Particle Composites. Advanced Materials, 2010, 22, 2082-2086.	21.0	122
115	Epitaxy of Calcite on Mica. Crystal Growth and Design, 2010, 10, 734-738.	3.0	23
116	Crystallization and formation mechanisms of nanostructures. Nanoscale, 2010, 2, 2326.	5.6	18
117	Nanostructured Calcite Single Crystals with Gyroid Morphologies. Advanced Materials, 2009, 21, 3928-3932.	21.0	103
118	Substrate-directed formation of calcium carbonate fibres. Journal of Materials Chemistry, 2009, 19, 387-398.	6.7	31
119	Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. Chemical Reviews, 2008, 108, 4332-4432.	47.7	1,222
120	The archaeal lipid composition of partially lithified cold seep mats. Organic Geochemistry, 2008, 39, 1000-1006.	1.8	6
121	Now You See Them. Science, 2008, 322, 1802-1803.	12.6	101
122	Synthesis-dependant structural variations in amorphous calcium carbonate. CrystEngComm, 2007, 9, 1226.	2.6	164
123	Anisotropic nano-papier mache microcapsules. Soft Matter, 2007, 3, 188-190.	2.7	39
124	Profiting from nature: macroporous copper with superior mechanical properties. Chemical Communications, 2007, , 3547.	4.1	53
125	Designer Crystals:Â Single Crystals with Complex Morphologies. Chemistry of Materials, 2007, 19, 1111-1119.	6.7	72
126	Continuous Structural Evolution of Calcium Carbonate Particles:Â A Unifying Model of Copolymer-Mediated Crystallization. Journal of the American Chemical Society, 2007, 129, 3729-3736.	13.7	240

#	Article	IF	CITATIONS
127	Template-Directed Control of Crystal Morphologies. Macromolecular Bioscience, 2007, 7, 152-162.	4.1	44
128	Growth of single crystals in structured templates. Journal of Materials Chemistry, 2006, 16, 408-416.	6.7	41
129	Crystallization on Surfaces of Well-Defined Topography. Langmuir, 2006, 22, 1955-1958.	3.5	36
130	Macroporous inorganic solids from a biomineral template. Journal of Crystal Growth, 2006, 294, 69-77.	1.5	47
131	Bioinspired Polymer–Inorganic Hybrid Materials. Advanced Materials, 2006, 18, 2270-2273.	21.0	33
132	Precipitation of Calcium Carbonate in Confinement. Advanced Functional Materials, 2004, 14, 1211-1220.	14.9	145
133	Shape-constraint as a route to calcite single crystals with complex morphologies. Journal of Materials Chemistry, 2004, 14, 2291.	6.7	71
134	Structural and physiological effects of calcium and magnesium in Emiliania huxleyi (Lohmann) Hay and Mohler. Journal of Structural Biology, 2004, 148, 307-314.	2.8	49
135	Calcium carbonate in biomineralisation and biomimetic chemistry. International Materials Reviews, 2003, 48, 187-224.	19.3	455
136	The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. Journal of Crystal Growth, 2003, 254, 206-218.	1.5	506
137	Study of Calcium Carbonate Precipitation under a Series of Fatty Acid Langmuir Monolayers Using Brewster Angle Microscopy. Langmuir, 2003, 19, 2830-2837.	3.5	110
138	Particles on Melt-Cut Mica Sheets Are Platinum. Langmuir, 2003, 19, 975-976.	3.5	21
139	Synthesis of controlled-structure sulfate-based copolymers via atom transfer radical polymerisation and their use as crystal habit modifiers for BaSO4. Journal of Materials Chemistry, 2002, 12, 890-896.	6.7	79
140	Synthesis of Single Crystals of Calcite with Complex Morphologies. Advanced Materials, 2002, 14, 1167.	21.0	153
141	Control of calcium carbonate morphology by transformation of an amorphous precursor in a constrained volume. Chemical Communications, 2001, , 901-902.	4.1	114
142	A solvothermal route to capped nanoparticles of \hat{I}^3 -Fe2O3 and CoFe2O4. Journal of Materials Chemistry, 2001, 11, 3215-3221.	6.7	87
143	A solvothermal route to capped CdSe nanoparticles. Chemical Communications, 2001, , 629-630.	4.1	58
144	Morphological influence of magnesium and organic additives on the precipitation of calcite. Journal of Crystal Growth, 2001, 231, 544-558.	1.5	257

#	Article	IF	Citations
145	Bioskeletons as Templates for Ordered, Macroporous Structures. Advanced Materials, 2000, 12, 1149-1151.	21.0	74
146	Porous gold structures through templating by echinoid skeletal plates. Chemical Communications, 2000, , 29-30.	4.1	111
147	Formation of patterned PbS and ZnS films on self-assembled monolayers. Thin Solid Films, 1999, 348, 188-195.	1.8	43
148	Chemical deposition of PbS on a series of i‰-functionalised self-assembled monolayers. Journal of Materials Chemistry, 1999, 9, 711-723.	6.7	37
149	Chemical Deposition of PbS on Self-Assembled Monolayers of 16-Mercaptohexadecanoic Acid. Langmuir, 1997, 13, 2033-2049.	3.5	93
150	Iron Biomineralization in the Poriferanlrcinia Oros. Journal of the Marine Biological Association of the United Kingdom, 1995, 75, 993-996.	0.8	2
151	The Colloid Chemical Approach to Nanostructured Materials. Advanced Materials, 1995, 7, 607-632.	21.0	7 45
152	Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. Journal of Inorganic Biochemistry, 1995, 58, 59-68.	3.5	187
153	Epitaxial Growth of Size-Quantized Cadmium Sulfide Crystals Under Arachidic Acid Monolayers. The Journal of Physical Chemistry, 1995, 99, 5500-5504.	2.9	208
154	Formation of Thin Films of Platinum, Palladium, and Mixed Platinum: Palladium Nanocrystallites by the Langmuir Monolayer Technique. Chemistry of Materials, 1995, 7, 1112-1116.	6.7	27
155	Gold Particulate Film Formation under Monolayers. The Journal of Physical Chemistry, 1995, 99, 9869-9875.	2.9	42
156	Ultra-thin particulate films prepared from capped and uncapped reverse-micelle-entrapped silver particles. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 673.	1.7	12
157	Monoparticulate Layers of Titanium Dioxide Nanocrystallites with Controllable Interparticle Distances. The Journal of Physical Chemistry, 1994, 98, 8827-8830.	2.9	106
158	Utilization of Surfactant-Stabilized Colloidal Silver Nanocrystallites in the Construction of Monoand Multiparticulate Langmuir-Blodgett Films. Langmuir, 1994, 10, 2035-2040.	3.5	114
159	Spreading of Clay Organocomplexes on Aqueous Solutions: Construction of Langmuir-Blodgett Clay Organocomplex Multilayer Films. Langmuir, 1994, 10, 3797-3804.	3.5	85
160	Influence of Membrane Composition on the Intravesicular Precipitation of Nanophase Gold Particles. Journal of Colloid and Interface Science, 1993, 161, 66-71.	9.4	28
161	Overproduction, purification and characterization of the Escherichia coli ferritin. FEBS Journal, 1993, 218, 985-995.	0.2	82
162	Two-dimensional silver electrocrystallization under monolayers spread on aqueous silver nitrate. Langmuir, 1993, 9, 3710-3716.	3.5	52

#	Article	IF	CITATIONS
163	Characterization of the manganese core of reconstituted ferritin by x-ray absorption spectroscopy. Journal of the American Chemical Society, 1993, 115, 8471-8472.	13.7	60
164	Biomineralization: Biomimetic Potential at the Inorganic-Organic Interface. MRS Bulletin, 1992, 17, 32-36.	3.5	31
165	Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature, 1991, 349, 684-687.	27.8	449
166	Controlled synthesis of inorganic materials using supramolecular assemblies. Advanced Materials, 1991, 3, 316-318.	21.0	60