Xue Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2032493/publications.pdf

Version: 2024-02-01

265 papers

13,855 citations

24978 57 h-index 24179 110 g-index

271 all docs

271 docs citations

times ranked

271

13213 citing authors

#	Article	IF	CITATIONS
1	Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 2006, 5, 33-38.	13.3	1,348
2	Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1927-1932.	3.3	720
3	Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature, 2019, 575, 473-479.	13.7	610
4	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, 2019, 363, .	6.0	521
5	Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates. Advanced Functional Materials, 2008, 18, 2673-2684.	7.8	398
6	Flexible Hybrid Electronics for Digital Healthcare. Advanced Materials, 2020, 32, e1902062.	11.1	345
7	Battery-free, stretchable optoelectronic systems for wireless optical characterization of the skin. Science Advances, 2016, 2, e1600418.	4.7	336
8	Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Science Advances, 2017, 3, e1701629.	4.7	336
9	Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron, 2017, 93, 509-521.e3.	3.8	323
10	Competing Fracture in Kinetically Controlled Transfer Printing. Langmuir, 2007, 23, 12555-12560.	1.6	301
11	Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry. Advanced Functional Materials, 2017, 27, 1604373.	7.8	248
12	Battery-free, wireless sensors for full-body pressure and temperature mapping. Science Translational Medicine, 2018, 10, .	5.8	247
13	Epidermal Electronics with Advanced Capabilities in Near-Field Communication. Small, 2015, 11, 906-912.	5.2	224
14	A skin-attachable, stretchable integrated system based on liquid GalnSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Materials, 2017, 9, e443-e443.	3.8	223
15	Breathable and Stretchable Temperature Sensors Inspired by Skin. Scientific Reports, 2015, 5, 11505.	1.6	218
16	Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Science Advances, 2017, 3, e1603170.	4.7	207
17	Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11144-11149.	3.3	193
18	Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Science Advances, 2015, 1, e1500701.	4.7	189

#	Article	IF	Citations
19	Stretchable Ferroelectric Nanoribbons with Wavy Configurations on Elastomeric Substrates. ACS Nano, 2011, 5, 3326-3332.	7.3	188
20	Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Science Advances, 2019, 5, eaaw1066.	4.7	180
21	Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities. Advanced Functional Materials, 2015, 25, 4761-4767.	7.8	148
22	Design and application of ‴J-shaped' stress–strain behavior in stretchable electronics: a review. Lab on A Chip, 2017, 17, 1689-1704.	3.1	140
23	Flexible inorganic bioelectronics. Npj Flexible Electronics, 2020, 4, .	5.1	134
24	Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy. Scientific Reports, 2015, 5, 16065.	1.6	132
25	Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Applied Materials & Interfaces, 2019, 11, 33370-33379.	4.0	127
26	Moisture-triggered physically transient electronics. Science Advances, 2017, 3, e1701222.	4.7	122
27	Soft Core/Shell Packages for Stretchable Electronics. Advanced Functional Materials, 2015, 25, 3698-3704.	7.8	116
28	Mechanics and thermal management of stretchable inorganic electronics. National Science Review, 2016, 3, 128-143.	4.6	112
29	Experimental and Theoretical Studies of Serpentine Interconnects on Ultrathin Elastomers for Stretchable Electronics. Advanced Functional Materials, 2017, 27, 1702589.	7.8	111
30	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	11.1	105
31	Experiments and viscoelastic analysis of peel test with patterned strips for applications to transfer printing. Journal of the Mechanics and Physics of Solids, 2013, 61, 1737-1752.	2.3	100
32	Direct Laser Writing-Based Programmable Transfer Printing via Bioinspired Shape Memory Reversible Adhesive. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35628-35633.	4.0	97
33	Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain, 2017, 158, 2108-2116.	2.0	93
34	Design of Strainâ€Limiting Substrate Materials for Stretchable and Flexible Electronics. Advanced Functional Materials, 2016, 26, 5345-5351.	7.8	92
35	Mechanically active materials in three-dimensional mesostructures. Science Advances, 2018, 4, eaat8313.	4.7	89
36	Fabrication of highly pressure-sensitive, hydrophobic, and flexible 3D carbon nanofiber networks by electrospinning for human physiological signal monitoring. Nanoscale, 2019, 11, 5942-5950.	2.8	88

#	Article	IF	CITATIONS
37	Electronic skin as wireless human-machine interfaces for robotic VR. Science Advances, 2022, 8, eabl6700.	4.7	88
38	Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Science Advances, 2020, 6, eabb1093.	4.7	87
39	The effective Young's modulus of composites beyond the Voigt estimation due to the Poisson effect. Composites Science and Technology, 2009, 69, 2198-2204.	3.8	86
40	Epidermal Inorganic Optoelectronics for Blood Oxygen Measurement. Advanced Healthcare Materials, 2017, 6, 1601013.	3.9	86
41	A Generic Soft Encapsulation Strategy for Stretchable Electronics. Advanced Functional Materials, 2019, 29, 1806630.	7.8	83
42	Sub-thermionic, ultra-high-gain organic transistors and circuits. Nature Communications, 2021, 12, 1928.	5.8	83
43	Soft Elastomers with Ionic Liquidâ€Filled Cavities as Strain Isolating Substrates for Wearable Electronics. Small, 2017, 13, 1602954.	5.2	82
44	Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS Nano, 2017, 11, 12562-12572.	7.3	82
45	Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. National Science Review, 2020, 7, 849-862.	4.6	82
46	Diffusion and Stress Coupling Effect during Oxidation at High Temperature. Journal of the American Ceramic Society, 2013, 96, 44-46.	1.9	78
47	Wireless, Batteryâ€Free Epidermal Electronics for Continuous, Quantitative, Multimodal Thermal Characterization of Skin. Small, 2018, 14, e1803192.	5 . 2	73
48	Epidermal radio frequency electronics for wireless power transfer. Microsystems and Nanoengineering, 2016, 2, 16052.	3 . 4	72
49	Review on flexible photonics/electronics integrated devices and fabrication strategy. Science China Information Sciences, 2018, 61, 1.	2.7	72
50	Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Science Translational Medicine, 2018, 10, .	5 . 8	68
51	A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Science Advances, 2021, 7, eabg2507.	4.7	68
52	Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. Advanced Functional Materials, 2017, 27, 1605476.	7.8	64
53	Direct Fabrication of Stretchable Electronics on a Polymer Substrate with Processâ€Integrated Programmable Rigidity. Advanced Functional Materials, 2018, 28, 1804604.	7.8	63
54	The equivalent medium of cellular substrate under large stretching, with applications to stretchable electronics. Journal of the Mechanics and Physics of Solids, 2018, 120, 199-207.	2.3	62

#	Article	IF	CITATIONS
55	High Performance, Tunable Electrically Small Antennas through Mechanically Guided 3D Assembly. Small, 2019, 15, e1804055.	5.2	60
56	Biocompatible and Ultra-Flexible Inorganic Strain Sensors Attached to Skin for Long-Term Vital Signs Monitoring. IEEE Electron Device Letters, 2016, 37, 496-499.	2.2	59
57	Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1905590.	11.1	59
58	Flexible Doppler ultrasound device for the monitoring of blood flow velocity. Science Advances, 2021, 7, eabi9283.	4.7	57
59	Flexible Transient Optical Waveguides and Surfaceâ€Wave Biosensors Constructed from Monocrystalline Silicon. Advanced Materials, 2018, 30, e1801584.	11.1	55
60	Highâ€Performance Flexible Tactile Sensor Enabling Intelligent Haptic Perception for a Soft Prosthetic Hand. Advanced Materials Technologies, 2019, 4, 1900317.	3.0	54
61	Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€√erm Electrophysiological Recording. Advanced Functional Materials, 2016, 26, 7281-7290.	7.8	53
62	Utilizing mechanical loads and flexoelectricity to induce and control complicated evolution of domain patterns in ferroelectric nanofilms. Journal of the Mechanics and Physics of Solids, 2015, 79, 108-133.	2.3	52
63	Multimodal epidermal devices for hydration monitoring. Microsystems and Nanoengineering, 2017, 3, 17014.	3.4	52
64	Ferro-piezoelectric properties of 0.94(Na0.5Bi0.5)TiO3–0.06BaTiO3 thin film prepared by metal–organic decomposition. Journal of Alloys and Compounds, 2010, 504, 129-133.	2.8	49
65	Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions. Part I: Analysis for obtaining film stress from non-local curvature information. International Journal of Solids and Structures, 2007, 44, 1745-1754.	1.3	48
66	Epidermal Electronic Systems for Measuring the Thermal Properties of Human Skin at Depths of up to Several Millimeters. Advanced Functional Materials, 2018, 28, 1802083.	7.8	47
67	The effect of thin film/substrate radii on the Stoney formula for thin film/substrate subjected to nonuniform axisymmetric misfit strain and temperature. Journal of Mechanics of Materials and Structures, 2006, 1, 1041-1053.	0.4	46
68	Kinetics and Chemistry of Hydrolysis of Ultrathin, Thermally Grown Layers of Silicon Oxide as Biofluid Barriers in Flexible Electronic Systems. ACS Applied Materials & Samp; Interfaces, 2017, 9, 42633-42638.	4.0	45
69	Wireless, implantable catheter-type oximeter designed for cardiac oxygen saturation. Science Advances, 2021, 7, .	4.7	45
70	A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing. Journal of the Mechanics and Physics of Solids, 2015, 77, 27-42.	2.3	44
71	Ultrafast response flexible breath sensor based on vanadium dioxide. Journal of Breath Research, 2017, 11, 036002.	1.5	43
72	Highâ€Performance Flexible Pressure Sensor Based on Controllable Hierarchical Microstructures by Laser Scribing for Wearable Electronics. Advanced Materials Technologies, 2021, 6, 2100122.	3.0	42

#	Article	IF	CITATIONS
73	Tactile Nearâ€Sensor Analogue Computing for Ultrafast Responsive Artificial Skin. Advanced Materials, 2022, 34, .	11.1	42
74	Interfacial Failure in Flexible Electronic Devices. IEEE Electron Device Letters, 2014, 35, 132-134.	2.2	38
75	Thin film/substrate systems featuring arbitrary film thickness and misfit strain distributions. Part II: Experimental validation of the non-local stress/curvature relations. International Journal of Solids and Structures, 2007, 44, 1755-1767.	1.3	37
76	Dynamic response and microstructure control of Al–Sc binary alloy under high-speed impact. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 35-45.	2.6	37
77	Ablation of C/SiC, C/SiC–ZrO2 and C/SiC–ZrB2 composites in dry air and air mixed with water vapor. Ceramics International, 2014, 40, 2985-2991.	2.3	37
78	Wireless Microfluidic Systems for Programmed, Functional Transformation of Transient Electronic Devices. Advanced Functional Materials, 2015, 25, 5100-5106.	7.8	37
79	Formation mechanisms of characteristic structures on the surface of C/SiC composites subjected to thermal ablation. Journal of the European Ceramic Society, 2016, 36, 451-456.	2.8	37
80	Multi-layer thin films/substrate system subjected to non-uniform misfit strains. International Journal of Solids and Structures, 2008, 45, 3688-3698.	1.3	36
81	Oxidation stress evolution and relaxation of oxide film/metal substrate system. Journal of Applied Physics, 2012, 112, .	1.1	36
82	Full-field measurement of nonuniform stresses of thin films at high temperature. Optics Express, 2011, 19, 13201.	1.7	35
83	Flexible and stretchable inorganic optoelectronics. Optical Materials Express, 2019, 9, 4023.	1.6	35
84	Stress focusing for controlled fracture in microelectromechanical systems. Applied Physics Letters, 2007, 90, 083110.	1.5	34
85	Slip zone model for interfacial failures of stiff film/soft substrate composite system in flexible electronics. Mechanics of Materials, 2014, 79, 35-44.	1.7	33
86	Microstructures and mechanical properties of AZ91 alloy with combined additions of Ca and Si. Journal of Materials Science, 2006, 41, 4725-4731.	1.7	32
87	The equivalent axisymmetric model for Berkovich indenters in power-law hardening materials. International Journal of Plasticity, 2010, 26, 141-148.	4.1	32
88	Flexible Ultrasonic Patch for Accelerating Chronic Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100785.	3.9	31
89	Magnetoelasticity of Tb0.3Dy0.7Fe1.95 alloys in a multiaxial stress-magnetic field space. Applied Physics Letters, 2007, 90, 182505.	1.5	29
90	A Finite-Deformation Mechanics Theory for Kinetically Controlled Transfer Printing. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	29

#	Article	IF	Citations
91	Ultrathin flexible piezoelectric sensors for monitoring eye fatigue. Journal of Micromechanics and Microengineering, 2018, 28, 025010.	1.5	29
92	Measurements for displacement and deformation at high temperature by using edge detection of digital image. Applied Optics, 2015, 54, 8731.	2.1	27
93	Stress–diffusion interaction during oxidation at high temperature. Chemical Physics Letters, 2014, 614, 95-98.	1.2	26
94	Three-point bending test at extremely high temperature enhanced by real-time observation and measurement. Measurement: Journal of the International Measurement Confederation, 2015, 59, 171-176.	2.5	26
95	Synchronous Full-Field Measurement of Temperature and Deformation of C/SiC Composite Subjected to Flame Heating at High Temperature. Experimental Mechanics, 2016, 56, 659-671.	1.1	26
96	Ultrasensitive Flexible Temperature-Mechanical Dual-Parameter Sensor Based on Vanadium Dioxide Films. IEEE Electron Device Letters, 2017, 38, 1128-1131.	2.2	26
97	In situ measurement of oxidation evolution at elevated temperature by nanoindentation. Scripta Materialia, 2015, 103, 61-64.	2.6	25
98	Wrinkling of a stiff thin film bonded to a pre-strained, compliant substrate with finite thickness. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160339.	1.0	25
99	Structural and electrical properties of (Na0.85K0.15)0.5Bi0.5TiO3 thin films deposited on LaNiO3 and Pt bottom electrodes. Applied Surface Science, 2010, 256, 3316-3320.	3.1	24
100	Buckling-Based Method for Measuring the Strain–Photonic Coupling Effect of GaAs Nanoribbons. ACS Nano, 2016, 10, 8199-8206.	7.3	24
101	Advanced approaches for quantitative characterization of thermal transport properties in soft materials using thin, conformable resistive sensors. Extreme Mechanics Letters, 2018, 22, 27-35.	2.0	24
102	Skinâ€Like Hybrid Integrated Circuits Conformal to Face for Continuous Respiratory Monitoring. Advanced Electronic Materials, 2020, 6, 2000145.	2.6	24
103	Spatially non-uniform, isotropic misfit strain in thin films bonded on plate substrates: The relation between non-uniform film stresses and system curvatures. Thin Solid Films, 2006, 515, 2220-2229.	0.8	23
104	Controllable wrinkle configurations by soft micro-patterns to enhance the stretchability of Si ribbons. Soft Matter, 2014, 10, 2559.	1.2	23
105	Effect of Mechanical Loads on Stability of Nanodomains in Ferroelectric Ultrathin Films: Towards Flexible Erasing of the Non-Volatile Memories. Scientific Reports, 2014, 4, 5339.	1.6	23
106	Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 65-71.	2.6	23
107	Collapse of microfluidic channels/reservoirs in thin, soft epidermal devices. Extreme Mechanics Letters, 2017, 11, 18-23.	2.0	23
108	Directionally controlled transfer printing using micropatterned stamps. Applied Physics Letters, 2013, 103, .	1.5	22

#	Article	IF	CITATIONS
109	In situ observation and measurement of composites subjected to extremely high temperature. Review of Scientific Instruments, 2014, 85, 035104.	0.6	22
110	High-Linearity Hydrogen Peroxide Sensor Based on Nanoporous Gold Electrode. Journal of the Electrochemical Society, 2019, 166, B814-B820.	1.3	22
111	Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature. Journal of Applied Physics, 2018, 123, 155301.	1.1	21
112	Ferroelastic properties of oriented TbxDy1â^'xFe2 polycrystals. Applied Physics Letters, 2003, 83, 3960-3962.	1.5	20
113	Interfacial slippage of inorganic electronic materials on plastic substrates. Applied Physics Letters, 2010, 97, .	1.5	20
114	Performance of TBCs system due to the different thicknesses of top ceramic layer. Ceramics International, 2015, 41, 2840-2846.	2.3	20
115	Surface evolution at nanoscale during oxidation: A competing mechanism between local curvature effect and stress effect. Journal of Applied Physics, 2016, 119, .	1.1	20
116	A flexible skin-mounted wireless acoustic device for bowel sounds monitoring and evaluation. Science China Information Sciences, 2019, 62, 1.	2.7	20
117	Synchronous full-field measurement of temperature and deformation based on separated radiation and reflected light. Optics and Lasers in Engineering, 2019, 116, 94-102.	2.0	20
118	Buckling configurations of stiff thin films tuned by micro-patterns on soft substrate. International Journal of Solids and Structures, 2019, 161, 55-63.	1.3	20
119	Rate-dependent interaction between thin films and interfaces during micro/nanoscale transfer printing. Soft Matter, 2012, 8, 418-423.	1.2	19
120	Configurations evolution of a buckled ribbon in response to out-of-plane loading. Extreme Mechanics Letters, 2020, 34, 100604.	2.0	19
121	High-Efficiency Transfer Printing Using Droplet Stamps for Robust Hybrid Integration of Flexible Devices. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1612-1619.	4.0	19
122	Predicting effective magnetostriction and moduli of magnetostrictive composites by using the double-inclusion method. Mechanics of Materials, 2003, 35, 623-631.	1.7	18
123	Anisotropic magnetostriction for Tb0.3Dy0.7Fe1.95 alloys under magnetomechanical loading. Journal of Alloys and Compounds, 2009, 476, 556-559.	2.8	18
124	Transition among failure modes of the bending system with a stiff film on a soft substrate. Applied Physics Letters, 2015, 106, .	1.5	18
125	Collapse of liquid-overfilled strain-isolation substrates in wearable electronics. International Journal of Solids and Structures, 2017, 117, 137-142.	1.3	18
126	Hydrogen peroxide sensor based on electrodeposited Prussian blue film. Journal of Applied Electrochemistry, 2017, 47, 1261-1271.	1.5	18

#	Article	IF	CITATIONS
127	Full-field Measurement of Topography and Curvature by Coherent Gradient Sensing Method at High Temperature. Experimental Mechanics, 2013, 53, 959-963.	1.1	17
128	Experimental and numerical investigation on SiC coating delamination from C/SiC composites. Composites Science and Technology, 2015, 110, 210-216.	3.8	17
129	Reversible Semicrystalline Polymer as Actuators Driven by Organic Solvent Vapor. Macromolecular Rapid Communications, 2018, 39, e1700716.	2.0	17
130	Toothed Substrate Design to Improve Stretchability of Serpentine Interconnect for Stretchable Electronics. Advanced Materials Technologies, 2018, 3, 1800169.	3.0	17
131	Delamination and Electromigration of Film Lines on Polymer Substrate Under Electrical Loading. IEEE Electron Device Letters, 2009, 30, 11-13.	2.2	16
132	Fabrication of lead-free (Na0.82K0.18)0.5Bi0.5TiO3 piezoelectric nanofiber by electrospinning. Materials Research Bulletin, 2010, 45, 717-721.	2.7	16
133	Slippage toughness measurement of soft interface between stiff thin films and elastomeric substrate. Review of Scientific Instruments, 2011, 82, 104704.	0.6	16
134	Mechanics of flexible and stretchable piezoelectrics for energy harvesting. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	2.0	16
135	Computational models for the determination of depth-dependent mechanical properties of skin with a soft, flexible measurement device. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160225.	1.0	16
136	Evolution of surface droplets and flow patterns on C/SiC during thermal ablation. Journal of the European Ceramic Society, 2019, 39, 3566-3574.	2.8	16
137	Centrosymmetric―and Axisymmetricâ€Patterned Flexible Tactile Sensor for Roughness and Slip Intelligent Recognition. Advanced Intelligent Systems, 2022, 4, 2100072.	3.3	16
138	Fatigue crack growth and propagation along the adhesive interface between fiber-reinforced composites. Engineering Fracture Mechanics, 2013, 110, 290-299.	2.0	15
139	Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	15
140	In-situ testing of surface evolution of SiC during thermal ablation: Mechanisms of formation, flowing and growth of liquid silica beads. Ceramics International, 2017, 43, 7040-7047.	2.3	15
141	Deformation and Fracture of Functional Ferromagnetics. Applied Mechanics Reviews, 2008, 61, .	4.5	14
142	Dynamic behaviors of controllably buckled thin films. Applied Physics Letters, 2009, 95, .	1.5	14
143	Biodegradable Flexible Electronic Device with Controlled Drug Release for Cancer Treatment. ACS Applied Materials & Drug Release for Cancer Treatment. ACS Applied Materials & Drug Release for Cancer Treatment. ACS	4.0	14
144	Liquid Droplet Stamp Transfer Printing. Advanced Functional Materials, 2021, 31, 2105407.	7.8	14

#	Article	IF	CITATIONS
145	Interfacial Delamination of Inorganic Films on Viscoelastic Substrates. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	13
146	Anisotropic Mechanics of Cellular Substrate Under Finite Deformation. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	13
147	Chemo-mechanical coupling effect on high temperature oxidation: A review. Science China Technological Sciences, 2019, 62, 1297-1321.	2.0	13
148	Elastomers with Microislands as Strain Isolating Substrates for Stretchable Electronics. Advanced Materials Technologies, 2019, 4, 1800365.	3.0	13
149	Bioâ€Inspired Microstructure Design to Improve Thermal Ablation and Oxidation Resistance: Experiment on SiC. Journal of the American Ceramic Society, 2015, 98, 4010-4015.	1.9	12
150	Thin, Millimeter Scale Fingernail Sensors for Thermal Characterization of Nail Bed Tissue. Advanced Functional Materials, 2018, 28, 1801380.	7.8	12
151	Rare earth monosilicates as oxidation resistant interphase for SiCf/SiC CMC: Investigation of SiCf/Yb2SiO5 model composites. Journal of Advanced Ceramics, 2022, 11, 702-711.	8.9	12
152	Oxidation at High Temperature Under Three-Point Bending Considering Stress-Diffusion Coupling Effects. Oxidation of Metals, 2016, 86, 125-133.	1.0	11
153	Ceramic-Based Speckles and Enhanced Feature-Detecting Algorithm for Deformation Measurement at High Temperature. Experimental Mechanics, 2017, 57, 377-386.	1.1	11
154	Revealing thermal ablation mechanisms of C/SiC with in situ optical observation and numerical simulation. Journal of the European Ceramic Society, 2020, 40, 3897-3905.	2.8	11
155	Effect of cerium addition on tensile properties of Fe3Al-based alloys at ambient temperature. Journal of Materials Science Letters, 1996, 15, 820-822.	0.5	10
156	Full-field measurement of surface topographies and thin film stresses at elevated temperatures by digital gradient sensing method. Applied Optics, 2015, 54, 721.	0.9	10
157	A finite deformation theory for the climbing habits and attachment of twining plants. Journal of the Mechanics and Physics of Solids, 2018, 116, 171-184.	2.3	10
158	Local wrinkling versus global buckling of stiff film bonded to finite-thick substrate. Extreme Mechanics Letters, 2019, 29, 100453.	2.0	10
159	Conformal analysis of epidermal electronics bonded onto wavy bio-tissue by moderately large deflection theory. Mechanics of Materials, 2019, 134, 61-68.	1.7	10
160	Flexible arc-armor inspired by origami. International Journal of Mechanical Sciences, 2021, 201, 106463.	3.6	10
161	Skin‣ike Electronics for Perception and Interaction: Materials, Structural Designs, and Applications. Advanced Intelligent Systems, 2021, 3, 2000108.	3.3	10
162	Overcoming high luminance gradient using serial exposure time method for synchronous full-field measurement of temperature and deformation. Applied Optics, 2019, 58, 6966.	0.9	10

#	Article	IF	Citations
163	Fluid Microchannel Encapsulation to Improve the Stretchability of Flexible Electronics. Advanced Materials Technologies, 2022, 7, .	3.0	10
164	Closed-form solutions for piezomagnetic inhomogeneities embedded in a non-piezomagnetic matrix. European Journal of Mechanics, A/Solids, 2004, 23, 1007-1019.	2.1	9
165	Wrinkles formation and evolution of nanoribbons with finite length on elastomeric substrate. Applied Physics Letters, 2011, 99, .	1.5	9
166	Multiwavelength shearing interferometry for measuring the slopes, curvatures, and shapes of thin films/substrate systems. Optics Letters, 2013, 38, 5446.	1.7	9
167	Surface Effects on the Mechanical Behavior of Buckled Thin Film. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	1.1	9
168	Magnetic and electric bulge-test instrument for the determination of coupling mechanical properties of functional free-standing films and flexible electronics. Review of Scientific Instruments, 2014, 85, 065117.	0.6	9
169	Temperature-Dependent Modulus of Metals Based on Lattice Vibration Theory. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	9
170	c-axis preferential orientation of hydroxyapatite accounts for the high wear resistance of the teeth of black carp (Mylopharyngodon piceus). Scientific Reports, 2016, 6, 23509.	1.6	9
171	Microstructure evolution of FeNiCr alloy induced by stress-oxidation coupling using high temperature nanoindentation. Corrosion Science, 2018, 135, 192-196.	3.0	9
172	Prussian Blue Modified Submicron Structured Gold Electrodes for Amperometric Hydrogen Peroxide Sensing. Electroanalysis, 2018, 30, 583-592.	1.5	9
173	Epidermal Electronics: Wireless, Batteryâ€Free Epidermal Electronics for Continuous, Quantitative, Multimodal Thermal Characterization of Skin (Small 47/2018). Small, 2018, 14, 1870226.	5.2	9
174	A Photochemical Approach toward Highâ€Fidelity Programmable Transfer Printing. Advanced Materials Technologies, 2019, 4, 1900163.	3.0	9
175	Interfacial Liquid Film Transfer Printing of Versatile Flexible Electronic Devices with High Yield Ratio. Advanced Materials Interfaces, 2021, 8, 2100287.	1.9	9
176	Color crosstalk correction for synchronous measurement of full-field temperature and deformation. Optics and Lasers in Engineering, 2022, 150, 106878.	2.0	9
177	Stable and low-resistance polydopamine methacrylamide-polyacrylamide hydrogel for brain-computer interface. Science China Materials, 2022, 65, 2298-2308.	3.5	9
178	Multilayer thin films/substrate system with variable film thickness subjected to non-uniform misfit strains. Acta Materialia, 2008, 56, 5322-5328.	3.8	8
179	A new dynamic device for low-dimensional materials testing. Review of Scientific Instruments, 2009, 80, 126108.	0.6	8
180	Enhancement on effective piezoelectric coefficient of Bi3.25Eu0.75Ti3O12 ferroelectric thin films under moderate annealing temperature. Thin Solid Films, 2010, 519, 714-718.	0.8	8

#	Article	IF	Citations
181	Dynamic Thermoelastic Analysis of a Slab Using Finite Integral Transformation Method. AIAA Journal, 2010, 48, 1833-1839.	1.5	8
182	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). Small, 2015, 11, 905-905.	5.2	8
183	Analysis and improvement of accuracy, sensitivity, and resolution of the coherent gradient sensing method. Applied Optics, 2016, 55, 4752.	2.1	8
184	Thermal shock resistance of alumina ceramics enhanced by nanostructured conformal coatings using metal–organic frameworks. Scripta Materialia, 2016, 119, 38-42.	2.6	8
185	Modification of the mechanism for stress-aided grain boundary oxidation ahead of cracks. Oxidation of Metals, 2018, 89, 331-338.	1.0	8
186	Challenges and opportunities in chemomechanics of materials: A perspective. Science China Technological Sciences, 2019, 62, 1385-1387.	2.0	8
187	A novel approach to temperature-dependent thermal contact conductance during transient isothermal cooling. International Journal of Heat and Mass Transfer, 2019, 130, 1170-1177.	2.5	8
188	Optimized deposition time boosts the performance of Prussian blue modified nanoporous gold electrodes for hydrogen peroxide monitoring. Nanotechnology, 2020, 31, 045501.	1.3	8
189	High-temperature thermal expansion behaviour of C/SiC studied using an in-situ optical visualisation method and numerical simulations in a quartz lamp array heating environment. Ceramics International, 2021, 47, 12547-12556.	2.3	8
190	Convolutional neural network-based image denoising for synchronous measurement of temperature and deformation at elevated temperature. Optik, 2021, 241, 166977.	1.4	8
191	Temperature and deformation measurement for large-scale flat specimens based on image mosaic algorithms. Applied Optics, 2020, 59, 3145.	0.9	8
192	Digital Gradient Sensing Method to Evaluate Thermal Stress at Elevated Temperatures. Experimental Mechanics, 2016, 56, 1123-1132.	1.1	7
193	Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170615.	1.0	7
194	High-frequency flashing of light source for synchronous measurement of temperature and deformation at elevated temperature. Optics and Lasers in Engineering, 2021, 137, 106361.	2.0	7
195	Flexible Dual-Channel Digital Auscultation Patch With Active Noise Reduction for Bowel Sound Monitoring and Application. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 2951-2962.	3.9	7
196	A numerical study of indentation with small spherical indenters. Acta Mechanica Solida Sinica, 2009, 22, 18-26.	1.0	6
197	Enhancement on effective piezoelectric coefficient d33 of Bi3.15Dy0.85Ti3O12 ferroelectric thin films. Materials Letters, 2010, 64, 618-621.	1.3	6
198	Non-uniform stress distribution and deformation bifurcation of thin film/substrate system subjected to gradient temperature. Thin Solid Films, 2011, 519, 2464-2469.	0.8	6

#	Article	IF	Citations
199	The coherent gradient sensor for film curvature measurements at cryogenic temperature. Optics Express, 2013, 21, 26352.	1.7	6
200	The Temperature-Dependent Strength of Metals: Theory and Experimental Validation. Journal of Applied Mechanics, Transactions ASME, 2014, 81 , .	1.1	6
201	Epidermal Systems: Soft Core/Shell Packages for Stretchable Electronics (Adv. Funct. Mater. 24/2015). Advanced Functional Materials, 2015, 25, 3697-3697.	7.8	6
202	Transition of oxide film configuration and the critical stress inferred by scanning probe microscopy at nanoscale. Chemical Physics Letters, 2016, 660, 33-36.	1.2	6
203	Improving the thermal shock resistance of ceramics by crack arrest blocks. Science China Technological Sciences, 2016, 59, 913-919.	2.0	6
204	Curvature effect on the surface topography evolution during oxidation at small scale. Journal of Applied Physics, 2017, 121, 125301.	1.1	6
205	Tuning the metal-insulator transition of vanadium dioxide thin films using a stretchable structure. Journal of Alloys and Compounds, 2017, 705, 468-474.	2.8	6
206	In situ full-field measurement of surface oxidation on Ni-based alloy using high temperature scanning probe microscopy. Scientific Reports, 2018, 8, 6684.	1.6	6
207	Homogeneity Permitted Robust Connection for Additive Manufacturing Stretchable Electronics. ACS Applied Materials & Diterfaces, 2020, 12, 43152-43159.	4.0	6
208	Deep learning-based super-resolution images for synchronous measurement of temperature and deformation at elevated temperature. Optik, 2021, 226, 165764.	1.4	6
209	Monte Carlo simulation of light scattering in tissue for the design of skin-like optical devices. Biomedical Optics Express, 2019, 10, 868.	1.5	6
210	Surface evolution and stability transition of silicon wafer subjected to nano-diamond grinding. AIP Advances, 2017, 7, 035221.	0.6	5
211	Failure Mechanism of Underfill Fillet Cracks in Flexible Wearable Electronics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 8, 1881-1887.	1.4	5
212	Chemo-mechanical coupling effect on bidirectional diffusion process during oxidation. Journal of Applied Physics, 2020, 127, .	1.1	5
213	Progress in integrated devices for optical vortex emission. Journal Physics D: Applied Physics, 2020, 53, 303002.	1.3	5
214	Caputo Fractional Derivative Hadamard Inequalities for Strongly m -Convex Functions. Journal of Function Spaces, 2021, 2021, 1-11.	0.4	5
215	The effect of arterial stiffness on cuff-based blood pressure measurement. Extreme Mechanics Letters, 2021, 48, 101298.	2.0	5
216	Removal of optical crosstalk caused by light source for synchronous measurement of temperature and deformation. Optical Engineering, 2020, 59, 1.	0.5	5

#	Article	IF	CITATIONS
217	Stretchable and flexible photonics/electronics devices and transfer printing. Science in China Series G: Physics, Mechanics and Astronomy, 2016, 46, 044607.	0.2	5
218	Ablation evolution of a new light weight silicon based thermal protection material in high temperature gas flow. Ceramics International, 2022, 48, 7136-7144.	2.3	5
219	MAGNETOSTRICTIVE PROPERTIES OF TbDyFe ALLOYS ALONG THE DIRECTION PERPENDICULAR TO THE MAGNETIC FIELD. Modern Physics Letters B, 2005, 19, 163-167.	1.0	4
220	Oximetry: Miniaturized Batteryâ€Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater.) Tj ETQ	q0.00 rgB	BT Overlock
221	In Situ Visualization Measurement of Flat Plate Ablation in High-Temperature Gas Flow. Journal of Applied Mechanics, Transactions ASME, 2018, 85, .	1.1	4
222	Stretchable Self-Powered Generator for Multiple Functional Detection. ACS Applied Electronic Materials, 2020, 2, 3577-3584.	2.0	4
223	Ultrathin Flexible Inorganic Device for Long-Term Monitoring of Light and Temperature. IEEE Transactions on Electron Devices, 2021, 68, 3558-3561.	1.6	4
224	Theoretical Modeling on Monitoring Left Ventricle Deformation Using Conformal Piezoelectric Sensors. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	4
225	AN ANALYTICAL MODEL FOR PREDICTING EFFECTIVE MAGNETOSTRICTION OF MAGNETOSTRICTIVE COMPOSITES. Modern Physics Letters B, 2002, 16, 1107-1114.	1.0	3
226	Crack Arrest in Brittle Ceramics Subjected to Thermal Shock and Ablation. Chinese Physics Letters, 2014, 31, 094601.	1.3	3
227	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Nearâ€Field Communication Capabilities (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4919-4919.	7.8	3
228	The impact of the thermal conductivity of a dielectric layer on the self-heating effect of a graphene transistor. Nanoscale, 2015, 7, 13561-13567.	2.8	3
229	Epidermal Thermal Depth Sensors: Epidermal Electronic Systems for Measuring the Thermal Properties of Human Skin at Depths of up to Several Millimeters (Adv. Funct. Mater. 34/2018). Advanced Functional Materials, 2018, 28, 1870242.	7.8	3
230	Tactile Sensors: Highâ€Performance Flexible Tactile Sensor Enabling Intelligent Haptic Perception for a Soft Prosthetic Hand (Adv. Mater. Technol. 8/2019). Advanced Materials Technologies, 2019, 4, 1970041.	3.0	3
231	Effects of Orientations on Efficiency of Energy Harvesting from Heart Motion Using Ultrathin Flexible Piezoelectric Devices. Advanced Theory and Simulations, 2019, 2, 1900050.	1.3	3
232	Physiologyâ€Based Stretchable Electronics Design Method for Accurate Surface Electromyography Evaluation. Advanced Science, 2021, 8, 2004987.	5.6	3
233	Improved monochromatic pyrometry for synchronous measurement of full-field temperature and deformation. Science China Technological Sciences, 2021, 64, 2033-2046.	2.0	3
234	Mechanics of pressure driven transfer printing for stamp with micropillars. Mechanics of Materials, 2021, 160, 103960.	1.7	3

#	Article	IF	Citations
235	Tunable Three-Dimensional Vibrational Structures for Concurrent Determination of Thin Film Modulus and Density. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	1.1	3
236	Tensile properties and creep resistance of Fe3Al-based alloys with tungsten addition. Journal of Materials Science Letters, 1997, 17, 181-184.	0.5	2
237	Modeling fracture in carbon nanotubes using a meshless atomic-scale finite-element method. Jom, 2008, 60, 50-55.	0.9	2
238	Instability and failure analysis of film-substrate structure under electrical loading., 2009,,.		2
239	Magnetization in thin film inferred by full-field curvatures based on cantilever beam technique. NDT and E International, 2014, 63, 35-37.	1.7	2
240	Attachment and interfacial strength between twining plants and the support. Extreme Mechanics Letters, 2017, 15, 108-112.	2.0	2
241	Stretchable Electronics: Toothed Substrate Design to Improve Stretchability of Serpentine Interconnect for Stretchable Electronics (Adv. Mater. Technol. 11/2018). Advanced Materials Technologies, 2018, 3, 1870044.	3.0	2
242	Hybrid liquid-metal heat dissipation structure enabled by phase transition for flexible electronics. Semiconductor Science and Technology, 2021, 36, 055007.	1.0	2
243	Flexible Hybrid Electronics for Monitoring Hypoxia. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 559-567.	2.7	2
244	Investigation of the bulging mechanism of C/SiC coating through in situ optical observation and numerical simulation. Ceramics International, 2021, 47, 20456-20466.	2.3	2
245	Experimental and theoretical analysis of integrated circuit (IC) chips on flexible substrates subjected to bending. Journal of Applied Physics, 2017, 122, .	1.1	2
246	Tuning the Sensitivity and Dynamic Range of Optical Oxygen Sensing Films by Blending Various Polymer Matrices. Biosensors, 2022, 12, 5.	2.3	2
247	Dynamic response and numerical simulation of Al-Sc and Al-Ti alloys under high-speed impact. Transactions of Nonferrous Metals Society of China, 2015, 25, 559-570.	1.7	1
248	Skin-like nanostrucutred biosensor system for noninvasive blood glucose monitoring., 2017,,.		1
249	Bio-inspired 3D neural electrodes for the peripheral nerves stimulation using shape memory polymers. , 2018, , .		1
250	An extended method of estimating the fatigue performance of mechanical structures with fasteners subject to shear loads. Advances in Mechanical Engineering, 2018, 10, 168781401876771.	0.8	1
251	Optical Waveguides: Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon (Adv. Mater. 32/2018). Advanced Materials, 2018, 30, 1870239.	11.1	1
252	Manufacture and Characterization of Ultrathin Flexible Chips. , 2021, , .		1

#	Article	IF	Citations
253	Synchronous measurement of temperature and deformation by an ultraviolet imaging system and monochromatic pyrometry at extreme temperatures. Applied Optics, 2021, 60, 6044.	0.9	1
254	Mechanics analysis of ultra-thin chip peeling from substrate under multi-needle-ejecting and vacuum-absorbing. International Journal of Solids and Structures, 2021, 224, 111009.	1.3	1
255	Optical difference in the frequency domain to suppress disturbance for wearable electronics. Biomedical Optics Express, 2020, 11, 6920.	1.5	1
256	Mechanics Design of Conical Spiral Structure for Flexible Coilable Antenna Array. International Journal of Aerospace Engineering, 2022, 2022, 1-8.	0.5	1
257	Experimental Study on Electro-Magneto-Mechanical Behaviour of Electromagnetic Solids. Key Engineering Materials, 2006, 326-328, 5-12.	0.4	0
258	Different protein expression of myocardium from Chinese mini-swine model of myocardial infarct. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 422-427.	0.4	0
259	Thermal and piezoelectric properties of Bi3.15Nd0.85Ti3O12 thin film prepared by metal organic decomposition. Transactions of Nonferrous Metals Society of China, 2010, 20, 1424-1428.	1.7	0
260	Ultra-thin and ultra-flexible temperature/strain sensor with CNT nanostrips. , 2016, , .		0
261	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Longâ€Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). Advanced Functional Materials, 2016, 26, 7280-7280.	7.8	0
262	Surface buckling with deterministic peaks/valleys regulated by bio-inspired micro-structures periodically distributed on elastic bilayers. Journal of Applied Physics, 2021, 129, 064703.	1.1	0
263	BIO-INTEGRATED FLEXIBLE SENSORS FOR HEALTH MONITORING: FABRICATION, INTEGRATION AND CHARACTERIZATION. , 2015, , 21-22.		0
264	Healthcare Monitoring Applications. , 2022, , 57-124.		0
265	Introduction to Flexible Bioelectronics. , 2022, , 1-56.		0