
Gregor C Leckebusch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2032457/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Extra-tropical cyclones in the present and future climate: a review. Theoretical and Applied Climatology, 2009, 96, 117-131.	2.8	430
2	IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bulletin of the American Meteorological Society, 2013, 94, 529-547.	3.3	391
3	The 2003 European summer heatwaves and drought -synoptic diagnosis and impacts. Weather, 2004, 59, 209-216.	0.7	374
4	The central European floods of August 2002: Part 1 – Rainfall periods and flood development. Weather, 2003, 58, 371-377.	0.7	208
5	Changing Northern Hemisphere Storm Tracks in an Ensemble of IPCC Climate Change Simulations. Journal of Climate, 2008, 21, 1669-1679.	3.2	207
6	Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dynamics, 2007, 29, 195-210.	3.8	199
7	Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Climate Dynamics, 2009, 32, 711-737.	3.8	191
8	Summer Floods in Central Europe – Climate Change Track?. Natural Hazards, 2005, 36, 165-189.	3.4	186
9	On the relationship between cyclones and extreme windstorm events over Europe under climate change. Global and Planetary Change, 2004, 44, 181-193.	3.5	168
10	Analysis of frequency and intensity of European winter storm events from a multi-model perspective, at synoptic and regional scales. Climate Research, 2006, 31, 59-74.	1.1	110
11	Cyclones causing wind storms in the Mediterranean: characteristics, trends and links to large-scale patterns. Natural Hazards and Earth System Sciences, 2010, 10, 1379-1391.	3.6	109
12	The central European floods of August 2002: Part 2 -Synoptic causes and considerations with respect to climatic change. Weather, 2003, 58, 434-442.	0.7	108
13	Future changes in European winter storm losses and extreme wind speeds inferred from GCM and RCM multi-model simulations. Natural Hazards and Earth System Sciences, 2011, 11, 1351-1370.	3.6	98
14	Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Natural Hazards and Earth System Sciences, 2007, 7, 165-175.	3.6	95
15	Reanalysis suggests long-term upward trends in European storminess since 1871. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	92
16	Development and application of an objective storm severity measure for the Northeast Atlantic region. Meteorologische Zeitschrift, 2008, 17, 575-587.	1.0	85
17	Property loss potentials for European midlatitude storms in a changing climate. Geophysical Research Letters, 2007, 34, .	4.0	80
18	Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. International Journal of Climatology, 2010, 30, 1289-1300.	3.5	79

#	Article	IF	CITATIONS
19	Climate of the Mediterranean. , 2012, , 301-346.		78
20	Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?. Meteorologische Zeitschrift, 2013, 22, 61-68.	1.0	77
21	European storminess and associated circulation weather types: future changes deduced from a multi-model ensemble of GCM simulations. Climate Research, 2010, 42, 27-43.	1.1	77
22	Mediterranean cyclones and windstorms in a changing climate. Regional Environmental Change, 2014, 14, 1873-1890.	2.9	64
23	Estimation of wind storm impacts overWestern Germany under future climate conditions using a statistical–dynamical downscaling approach. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 62, 188.	1.7	63
24	Modelling the impact of climate extremes: an overview of the MICE project. Climatic Change, 2007, 81, 163-177.	3.6	58
25	High-resolution refinement of a storm loss model and estimation of return periods of loss-intensive storms over Germany. Natural Hazards and Earth System Sciences, 2011, 11, 2821-2833.	3.6	50
26	Different longâ€ŧerm trends of extraâ€ŧropical cyclones and windstorms in <scp>ERAâ€20C</scp> and <scp>NOAAâ€20CR</scp> reanalyses. Atmospheric Science Letters, 2016, 17, 586-595.	1.9	46
27	Extreme wind storms over Europe in present and future climate: a cluster analysis approach. Meteorologische Zeitschrift, 2008, 17, 67-82.	1.0	45
28	Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 70, 1454808.	1.7	43
29	Climate and socioeconomic influences on interannual variability of cholera in Nigeria. Health and Place, 2015, 34, 107-117.	3.3	38
30	Probabilistic evaluation of decadal prediction skill regarding Northern Hemisphere winter storms. Meteorologische Zeitschrift, 2016, 25, 721-738.	1.0	35
31	Vb cyclones and associated rainfall extremes over Central Europe under present day and climate change conditions. Meteorologische Zeitschrift, 2013, 22, 649-660.	1.0	34
32	Southern Hemisphere winter cyclone activity under recent and future climate conditions in multiâ€model <scp>AOGCM</scp> simulations. International Journal of Climatology, 2014, 34, 3400-3416.	3.5	34
33	Benefits and limitations of regional multi-model ensembles for storm loss estimations. Climate Research, 2010, 44, 211-225.	1.1	29
34	Seasonal forecast skill for extratropical cyclones and windstorms. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 92-104.	2.7	27
35	Future Climate Projections. Advances in Global Change Research, 2013, , 53-118.	1.6	24
36	Projections of global warming-induced impacts on winter storm losses in the German private household sector. Climatic Change, 2013, 121, 195-207.	3.6	23

#	Article	IF	CITATIONS
37	Interactions between apparently â€~primary' weather-driven hazards and their cost. Environmental Research Letters, 2015, 10, 104003.	5.2	22
38	The Skill of Seasonal Ensemble Prediction Systems to Forecast Wintertime Windstorm Frequency over the North Atlantic and Europe. Monthly Weather Review, 2011, 139, 3052-3068.	1.4	20
39	Evaluating decadal predictions of northern hemispheric cyclone frequencies. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 66, 22830.	1.7	20
40	Modelling serial clustering and interâ€annual variability of European winter windstorms based on largeâ€scale drivers. International Journal of Climatology, 2018, 38, 3044-3057.	3.5	20
41	An approach to build an event set of European windstorms based on ECMWFÂEPS. Natural Hazards and Earth System Sciences, 2016, 16, 255-268.	3.6	18
42	The Impact of Climate Change on Meningitis in Northwest Nigeria: An Assessment Using CMIP5 Climate Model Simulations. Weather, Climate, and Society, 2014, 6, 371-379.	1.1	17
43	Hazard Footprint-Based Normalization of Economic Losses from Tropical Cyclones in China During 1983–2015. International Journal of Disaster Risk Science, 2018, 9, 195-206.	2.9	15
44	Climate Influences on Meningitis Incidence in Northwest Nigeria. Weather, Climate, and Society, 2014, 6, 62-76.	1.1	14
45	Was the Extreme Storm Season in Winter 2013/14 Over the North Atlantic and the United Kingdom Triggered by Changes in the West Pacific Warm Pool?. Bulletin of the American Meteorological Society, 2015, 96, S29-S34.	3.3	14
46	Estimating uncertainties from high resolution simulations of extreme wind storms and consequences for impacts. Meteorologische Zeitschrift, 2016, 25, 531-541.	1.0	14
47	Windstorms, the Most Costly Natural Hazard in Europe. , 0, , 109-120.		13
48	Net Precipitation of Antarctica: Thermodynamical and Dynamical Parts of the Climate Change Signal. Journal of Climate, 2016, 29, 907-924.	3.2	13
49	Loss potentials based on an ensemble forecast: How likely are winter windstorm losses similar to 1990?. Atmospheric Science Letters, 2019, 20, e891.	1.9	13
50	Meteorology and oceanography of the Atlantic sector of the Southern Ocean—a review of German achievements from the last decade. Ocean Dynamics, 2016, 66, 1379-1413.	2.2	12
51	Largeâ€Scale Drivers and Seasonal Predictability of Extreme Wind Speeds Over the North Atlantic and Europe. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,518.	3.3	11
52	Past and Current Climate Changes in the Mediterranean Region. Advances in Global Change Research, 2013, , 9-51.	1.6	9
53	Intraseasonal variability of the Indian summer monsoon: wet and dry events in COSMO-CLM. Climate Dynamics, 2016, 47, 2635-2651.	3.8	9
54	A new view on the risk of typhoon occurrence in the western North Pacific. Natural Hazards and Earth System Sciences, 2021, 21, 663-682.	3.6	9

GREGOR C LECKEBUSCH

#	Article	IF	CITATIONS
55	Decadal windstorm activity in the North Atlantic-European sector and its relationship to the meridional overturning circulation in an ensemble of simulations with a coupled climate model. Climate Dynamics, 2014, 43, 1545-1555.	3.8	8
56	Demystifying academics to enhance university–business collaborations in environmental science. Geoscience Communication, 2019, 2, 1-23.	0.9	8
57	Past and Projected Weather Pattern Persistence with Associated Multi-Hazards in the British Isles. Atmosphere, 2019, 10, 577.	2.3	7
58	Objective identification of potentially damaging tropical cyclones over the Western North Pacific. Environmental Research Communications, 2020, 2, 031005.	2.3	7
59	On the Dependency of Atlantic Hurricane and European Windstorm Hazards. Geophysical Research Letters, 2020, 47, .	4.0	7
60	ldentification of storm surge events over the German Bight from atmospheric reanalysis and climate model data. Natural Hazards and Earth System Sciences, 2015, 15, 1437-1447.	3.6	6
61	Quantifying the extremity of windstorms for regions featuring infrequent events. Atmospheric Science Letters, 2017, 18, 315-322.	1.9	5
62	The role of synoptic processes in mudflow formation in the piedmont areas of Uzbekistan. Natural Hazards and Earth System Sciences, 2018, 18, 2893-2919.	3.6	5
63	Projected Change—Atmosphere. Regional Climate Studies, 2016, , 149-173.	1.2	4
64	Was the Extreme Storm Season in Winter 2013/14 Over the North Atlantic and the United Kingdom Triggered by Changes in the West Pacific Warm Pool?. Bulletin of the American Meteorological Society, 2015, 96, S29-S34.	3.3	2
65	Assessment of mudflow risk in Uzbekistan using CMIP5 models. Weather and Climate Extremes, 2022, 35, 100403.	4.1	1
66	Estimation of wind storm impacts overWestern Germany under future climate conditions using a statisticalââ,¬â€œdynamical downscaling approach. Tellus, Series A: Dynamic Meteorology and Oceanography, 2010, , .	1.7	0
67	On the Use of Ensemble Predictions for Parametric Typhoon Insurance. Climate, 2021, 9, 174.	2.8	0
68	A Causality-guided Statistical Approach for Modeling Extreme Mei-yu Rainfall Based on Known Large-scale Modes—A Pilot Study. Advances in Atmospheric Sciences, 0, , 1.	4.3	0