Anna Stojakowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2032189/publications.pdf Version: 2024-02-01

ANNA STOLAKOWSKA

#	Article	IF	CITATIONS
1	Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere, 2014, 112, 217-224.	8.2	72
2	Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L Mycorrhiza, 2010, 20, 497-504.	2.8	59
3	Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiologiae Plantarum, 2007, 29, 127-132.	2.1	53
4	Does co-inoculation of Lactuca serriola with endophytic and arbuscular mycorrhizal fungi improve plant growth in a polluted environment?. Mycorrhiza, 2018, 28, 235-246.	2.8	50
5	Systematic implications of sesquiterpene lactones in Lactuca species. Biochemical Systematics and Ecology, 2009, 37, 174-179.	1.3	49
6	Sesquiterpene Lactones in a Hairy Root Culture of Cichorium intybus. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 994-997.	1.4	48
7	Simultaneous quantification of eudesmanolides and thymol derivatives from tissues ofInula helenium andl. royleana by reversed-phase high-performance liquid Chromatography. Phytochemical Analysis, 2006, 17, 157-161.	2.4	45
8	Sesquiterpene lactones in Agrobacterium rhizogenes—Transformed hairy root culture of Lactuca virosa. Phytochemistry, 1995, 40, 1139-1140.	2.9	36
9	Flavonoid Production in Transformed Root Cultures of Scutellaria baicalensis. Journal of Plant Physiology, 2000, 156, 121-125.	3.5	31
10	Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiologiae Plantarum, 2012, 34, 291-298.	2.1	28
11	Antimicrobial activity of 10-isobutyryloxy-8,9-epoxythymol isobutyrate. Fìtoterapìâ, 2005, 76, 687-690.	2.2	24
12	Variation of sesquiterpene lactones in Lactuca aculeata natural populations from Israel, Jordan and Turkey. Biochemical Systematics and Ecology, 2010, 38, 602-611.	1.3	23
13	Long-Term Cultured Hairy Roots of Chicory—A Rich Source of Hydroxycinnamates and 8-Deoxylactucin Glucoside. Applied Biochemistry and Biotechnology, 2013, 171, 1589-1601.	2.9	23
14	Root tubers of Lactuca tuberosa as a source of antioxidant phenolic compounds and new furofuran lignans. Food Chemistry, 2013, 138, 1250-1255.	8.2	22
15	A sesquiterpene coumarin ether from transformed roots of Tanacetum parthenium. Phytochemistry, 1997, 46, 515-516.	2.9	21
16	A new neolignan glucoside from hairy roots of Cichorium intybus. Phytochemistry Letters, 2013, 6, 59-61.	1.2	17
17	Production of parthenolide in organ cultures of feverfew. Plant Cell, Tissue and Organ Culture, 1997, 47, 159-162.	2.3	16
18	Salicylate and methyl jasmonate differentially influence diacetylene accumulation pattern in transformed roots of feverfew. Plant Science, 2002, 163, 1147-1152	3.6	16

ANNA STOJAKOWSKA

#	Article	IF	CITATIONS
19	Sesquiterpene Lactones in Tissue Culture ofLactuca virosa. Planta Medica, 1994, 60, 93-94.	1.3	15
20	Furofuran lignans from a callus culture of Cichorium intybus. Plant Cell Reports, 2005, 24, 246-249.	5.6	15
21	Terpenoids and phenolics from Inula ensifolia. Biochemical Systematics and Ecology, 2010, 38, 232-235.	1.3	15
22	Hydroxycinnamates from elecampane (Inula helenium L.) callus culture. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	14
23	Helenalin Acetate inin vitroPropagated Plants ofArnica montana. Planta Medica, 1993, 59, 51-53.	1.3	13
24	Carpesium divaricatum Sieb. & Zucc. Revisited: Newly Identified Constituents from Aerial Parts of the Plant and Their Possible Contribution to the Biological Activity of the Plant. Molecules, 2019, 24, 1614.	3.8	13
25	Neuroprotective Effects of Methyl Caffeate against Hydrogen Peroxide-Induced Cell Damage: Involvement of Caspase 3 and Cathepsin D Inhibition. Biomolecules, 2020, 10, 1530.	4.0	13
26	Secondary metabolites from a callus culture of Scutellaria columnae. Fìtoterapìâ, 1999, 70, 324-325.	2.2	12
27	Neuroprotective Properties of Kempferol Derivatives from Maesa membranacea against Oxidative Stress-Induced Cell Damage: An Association with Cathepsin D Inhibition and PI3K/Akt Activation. International Journal of Molecular Sciences, 2021, 22, 10363.	4.1	12
28	Thymol Derivatives from a Root Culture of Inula helenium. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2004, 59, 606-608.	1.4	11
29	Associations between root-inhabiting fungi and 40 species of medicinal plants with potential applications in the pharmaceutical and biotechnological industries. Applied Soil Ecology, 2019, 137, 69-77.	4.3	11
30	Variation of sesquiterpene lactone contents in Lactuca georgica natural populations from Armenia. Genetic Resources and Crop Evolution, 2015, 62, 431-441.	1.6	10
31	Eupatoriopicrin Inhibits Pro-inflammatory Functions of Neutrophils via Suppression of IL-8 and TNF-alpha Production and p38 and ERK 1/2 MAP Kinases. Journal of Natural Products, 2019, 82, 375-385.	3.0	10
32	Major terpenoids from <i>Telekia speciosa</i> flowers and their cytotoxic activity <i>in vitro</i> . Natural Product Research, 2019, 33, 1804-1808.	1.8	10
33	Effects of various elicitors on the accumulation and secretion of spiroketal enol ether diacetylenes in feverfew hairy root culture. Acta Societatis Botanicorum Poloniae, 2011, 77, 17-21.	0.8	10
34	Constituents of Xerolekia speciosissima (L.) Anderb. (Inuleae), and Anti-Inflammatory Activity of 7,10-Diisobutyryloxy-8,9-epoxythymyl Isobutyrate. Molecules, 2020, 25, 4913.	3.8	9
35	Micropropagation of Urginea maritima (L.) Baker s. str Acta Societatis Botanicorum Poloniae, 2014, 62, 11-15.	0.8	9
36	Quantitative analysis of sesquiterpene lactones and thymol derivatives in extracts from Telekia speciosa. Phytochemistry Letters, 2015, 11, 378-383.	1.2	8

Anna Stojakowska

#	Article	IF	CITATIONS
37	Bioactive phenolics from in vitro cultures of Lactuca aculeata Boiss. et Kotschy. Phytochemistry Letters, 2017, 19, 7-11.	1.2	8
38	Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: A preliminary study. Journal of Food Composition and Analysis, 2018, 69, 20-24.	3.9	8
39	Micropropagation of Scutellaria baicalensis Georgi. Acta Societatis Botanicorum Poloniae, 2014, 68, 103-107.	0.8	8
40	In vitro propagation of Inula royleana DC. Acta Societatis Botanicorum Poloniae, 2011, 73, 5-8.	0.8	8
41	From Monographs to Chromatograms: The Antimicrobial Potential of Inula helenium L. (Elecampane) Naturalised in Ireland. Molecules, 2022, 27, 1406.	3.8	8
42	Phenolic constituents of Lactuca tenerrima. Biochemical Systematics and Ecology, 2012, 42, 32-34.	1.3	7
43	Acylated hydroxycinnamic acid glucosides from flowers of Telekia Speciosa. Phytochemistry Letters, 2015, 12, 257-261.	1.2	7
44	Composition of Essential Oils from Roots and Aerial Parts of Carpesium divaricatum, a Traditional Herbal Medicine and Wild Edible Plant from South-East Asia, Grown in Poland. Molecules, 2019, 24, 4418.	3.8	7
45	The contribution of phenolics to the anti-inflammatory potential of the extract from Bolivian coriander (Porophyllum ruderale subsp. ruderale). Food Chemistry, 2022, 371, 131116.	8.2	7
46	Flavonoids from Teucrium fruticans L. Acta Societatis Botanicorum Poloniae, 2014, 70, 199-201.	0.8	7
47	Chemical composition of essential oils from a multiple shoot culture of Telekia speciosa and different plant organs. Natural Product Communications, 2012, 7, 625-8.	0.5	7
48	Sesquiterpenoids from roots of Lactuca sativa var. angustana cv. "Grüner Stern― Phytochemistry Letters, 2017, 20, 425-428.	1.2	6
49	Terpenoids from a multiple shoot culture of Telekia speciosa. Acta Societatis Botanicorum Poloniae, 2011, 80, 253-256.	0.8	6
50	Chemical Composition of Essential Oils from a Multiple Shoot Culture of Telekia speciosa and Different Plant Organs. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	5
51	Further sesquiterpenoids and phenolics from two species of Taraxacum F.H. Wigg. and cytotoxic activity of taraxinic acid and its derivatives. Phytochemistry Letters, 2019, 30, 296-301.	1.2	5
52	Stem Lettuce and Its Metabolites: Does the Variety Make Any Difference?. Foods, 2021, 10, 59.	4.3	5
53	Attempts of chemical standardizing of Chrysanthemum parthenium as a prospective antimigraine drug. Polish Journal of Pharmacology and Pharmacy, 1991, 43, 213-7.	0.0	5
54	Chemical constituents of Lactuca dregeana. Biochemical Systematics and Ecology, 2015, 59, 302-304.	1.3	4

Anna Stojakowska

#	Article	IF	CITATIONS
55	Natural products from Tolpis barbata (L.) Gaertn. (Asteraceae, Cichorieae). Biochemical Systematics and Ecology, 2019, 86, 103922.	1.3	4
56	Variation of sesquiterpene lactone contents in Lactuca altaica natural populations from Armenia. Biochemical Systematics and Ecology, 2020, 90, 104030.	1.3	4
57	Germacranolides from Carpesium divaricatum: Some New Data on Cytotoxic and Anti-Inflammatory Activity. Molecules, 2021, 26, 4644.	3.8	4
58	PROTECTIVE EFFECT OF PHILESIA MAGELLANICA (COICOPIHUE) FROM CHILEAN PATAGONIA AGAINST OXIDATIVE DAMAGE. Journal of the Chilean Chemical Society, 2015, 60, 2935-2939.	1.2	3
59	Accumulation of ixerin F and activities of some terpenoid bisynthetic enzymes in a cell suspension culture of Lactuca virosa L. Acta Societatis Botanicorum Poloniae, 2014, 66, 185-188.	0.8	3
60	New Polyesterified Ursane Derivatives from Leaves of Maesa membranacea and Their Cytotoxic Activity. Molecules, 2021, 26, 7013.	3.8	3
61	Sesquiterpene Lactones and Phenolics from Roots of Leontodon hispidus subsp. hispidus. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	2
62	Thymol derivatives from the roots of Xerolekia speciosissima an endemic species of the pre-Alpine area. Phytochemistry Letters, 2019, 30, 235-237.	1.2	2
63	Composition of Essential Oils from Roots and Aerial Parts of Carpesium cernuum and Their Antibacterial and Cytotoxic Activities. Molecules, 2021, 26, 1883.	3.8	2
64	Professor Wanda Kisiel (1946–2018) in memoriam. Herba Polonica, 2019, 65, 71-72.	0.6	2
65	Changes in the Proscillaridin A Content During Micropropagation ofUrginea maritima. Planta Medica, 1990, 56, 549-550.	1.3	1
66	A new sesquiterpenoid and further natural products from Taraxacum portentosum Kirschner & ÅtÄ›pánek, an endangered species. Natural Product Research, 2020, 35, 1-5.	1.8	1
67	Chemical constituents from Lactuca plumieri (L.) Gren. & Godr. (Asteraceae). Natural Product Research, 2021, , 1-5.	1.8	1
68	Hairy root culture of Lactuca virosa L Acta Societatis Botanicorum Poloniae, 2014, 64, 33-39.	0.8	1
69	Chemical constituents isolated from stems of Maesa membranacea. Vietnam Journal of Science Technology and Engineering, 2020, 62, 15-18.	0.2	1
70	Cultivation and preliminary phytochemical analysis of the Psychotria bacteriophila callus tissue. Acta Poloniae Pharmaceutica, 1989, 46, 401-3.	0.1	1
71	Secondary Metabolism in Tissue and Organ Cultures of Plants from the Tribe Cichorieae. Reference Series in Phytochemistry, 2019, , 1-20.	0.4	0
72	Secondary Metabolism in Tissue and Organ Cultures of Plants from the Tribe Cichorieae. Reference Series in Phytochemistry, 2021, , 723-741.	0.4	0