
Costas E Stathopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2031979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Date Components as Promising Plant-Based Materials to Be Incorporated into Baked Goods—A Review. Sustainability, 2022, 14, 605.	1.6	19
2	Physical Chemical and Textural Characteristics and Sensory Evaluation of Cookies Formulated with Date Seed Powder. Foods, 2022, 11, 305.	1.9	12
3	Antioxidant Potential of Cookies Formulated with Date Seed Powder. Foods, 2022, 11, 448.	1.9	29
4	The Potential Application of Pickering Multiple Emulsions in Food. Foods, 2022, 11, 1558.	1.9	20
5	Study on glass transition of whole-grain wheat biscuit using Dynamic Vapor Sorption, Differential Scanning Calorimetry, and texture and color analysis. LWT - Food Science and Technology, 2021, 150, 111969.	2.5	3
6	Exopolysaccharide produced by potential probiotic Enterococcus faecium MS79: Characterization, bioactivities and rheological properties influenced by salt and pH. LWT - Food Science and Technology, 2020, 131, 109741.	2.5	25
7	Improving the storage quality of Tahitian limes (Citrus latifolia) by pre-storage UV-C irradiation. Journal of Food Science and Technology, 2019, 56, 1438-1444.	1.4	11
8	A starch edible surface coating delays banana fruit ripening. LWT - Food Science and Technology, 2019, 100, 341-347.	2.5	123
9	Optimizing a sustainable ultrasound-assisted extraction method for the recovery of polyphenols from lemon by-products: comparison with hot water and organic solvent extractions. European Food Research and Technology, 2018, 244, 1353-1365.	1.6	48
10	Pretreatment of citrus by-products affects polyphenol recovery: a review. Food Reviews International, 2018, 34, 770-795.	4.3	27
11	Effect of Biocomposite Edible Coatings Based on Pea Starch and Guar Gum on Nutritional Quality of "Valencia―Orange During Storage. Starch/Staerke, 2018, 70, 1700299.	1.1	20
12	The application of low pressure storage to maintain the quality of zucchinis. New Zealand Journal of Crop and Horticultural Science, 2018, 46, 254-263.	0.7	3
13	Microwave irradiation enhances the <i>inÂvitro</i> antifungal activity of citrus byâ€product aqueous extracts against <i>Alternaria alternata</i> . International Journal of Food Science and Technology, 2018, 53, 1510-1517.	1.3	12
14	Effect of starch physiology, gelatinization, and retrogradation on the attributes of rice starchâ€Î¹â€¢arrageenan film. Starch/Staerke, 2018, 70, 1700099.	1.1	32
15	Ultrasound increases the aqueous extraction of phenolic compounds with high antioxidant activity from olive pomace. LWT - Food Science and Technology, 2018, 89, 284-290.	2.5	82
16	Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Bioscience, 2018, 21, 20-26.	2.0	55
17	Effect of low-pressure storage on the quality of green capsicums (Capsicum annum L.). Journal of Horticultural Science and Biotechnology, 2018, 93, 529-536.	0.9	6
18	Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of †Valencia' oranges. Postharvest Biology and Technology, 2018, 137, 9-20.	2.9	129

#	Article	IF	CITATIONS
19	Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and Î1-Carrageenan. Foods, 2018, 7, 115.	1.9	92
20	The Olive Biophenols Oleuropein and Hydroxytyrosol Selectively Reduce Proliferation, Influence the Cell Cycle, and Induce Apoptosis in Pancreatic Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 1937.	1.8	74
21	Combined postharvest UV-C and 1-methylcyclopropene (1-MCP) treatment, followed by storage continuously in low level of ethylene atmosphere improves the quality of Tahitian limes. Journal of Food Science and Technology, 2018, 55, 2467-2475.	1.4	11
22	Effect of vacuumâ€drying, hot airâ€drying and freezeâ€drying on polyphenols and antioxidant capacity of lemon (<i>Citrus limon</i>) pomace aqueous extracts. International Journal of Food Science and Technology, 2017, 52, 880-887.	1.3	100
23	Use of low-pressure storage to improve the quality of tomatoes. Journal of Horticultural Science and Biotechnology, 2017, 92, 583-590.	0.9	9
24	Use of response surface methodology (RSM) to optimize pea starch–chitosan novel edible film formulation. Journal of Food Science and Technology, 2017, 54, 2270-2278.	1.4	57
25	Development of biocomposite films incorporated with different amounts of shellac, emulsifier, and surfactant. Food Hydrocolloids, 2017, 72, 174-184.	5.6	26
26	Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. International Journal of Biological Macromolecules, 2017, 104, 345-359.	3.6	111
27	Postharvest UV-C treatment combined with 1-methylcyclopropene (1-MCP), followed by storage in continuous low-level ethylene atmosphere, improves the quality of tomatoes. Journal of Horticultural Science and Biotechnology, 2017, 92, 521-529.	0.9	13
28	Amylose-lipid complex as a measure of variations in physical, mechanical and barrier attributes of rice starch- Î ¹ -carrageenan biodegradable edible film. Food Packaging and Shelf Life, 2017, 14, 108-115.	3.3	52
29	Physical, Barrier, and Antioxidant Properties of Pea Starch-Guar Gum Biocomposite Edible Films by Incorporation of Natural Plant Extracts. Food and Bioprocess Technology, 2017, 10, 2240-2250.	2.6	60
30	Characterization of pea starch-guar gum biocomposite edible films enriched by natural antimicrobial agents for active food packaging. Food and Bioproducts Processing, 2017, 105, 51-63.	1.8	54
31	Development of edible blend films with good mechanical and barrier properties from pea starch and guar gum. Starch/Staerke, 2017, 69, 1600227.	1.1	25
32	Enhancement of the total phenolic compounds and antioxidant activity of aqueous <i>Citrus limon</i> L. pomace extract using microwave pretreatment on the dry powder. Journal of Food Processing and Preservation, 2017, 41, e13152.	0.9	31
33	Mechanical and Physical Properties of Pea Starch Edible Films in the Presence of Glycerol. Journal of Food Processing and Preservation, 2016, 40, 1339-1351.	0.9	53
34	Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 2016, 86, 342-352.	2.5	133
35	Optimisation of aqueous extraction conditions for the recovery of phenolic compounds and antioxidants from lemon pomace. International Journal of Food Science and Technology, 2016, 51, 2009-2018.	1.3	29
36	Sweet cherry: Composition, postharvest preservation, processing and trends for its future use. Trends in Food Science and Technology, 2016, 55, 72-83.	7.8	132

#	Article	IF	CITATIONS
37	High pressure processing of barramundi (Lates calcarifer) muscle before freezing: The effects on selected physicochemical properties during frozen storage. Journal of Food Engineering, 2016, 169, 72-78.	2.7	54
38	Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells. Molecules, 2015, 20, 12992-13004.	1.7	55
39	Advances in High-Pressure Processing of Fish Muscles. Food Engineering Reviews, 2015, 7, 109-129.	3.1	77
40	Ultrasound-Assisted Aqueous Extraction of Oil and Carotenoids from Microwave-Dried Gac (<i>Momordica cochinchinensis</i> Spreng) Aril. International Journal of Food Engineering, 2015, 11, 479-492.	0.7	9
41	A storage study of encapsulated gac (Momordica cochinchinensis) oil powder and its fortification into foods. Food and Bioproducts Processing, 2015, 96, 113-125.	1.8	35
42	Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 2015, 281, 65-75.	2.1	77
43	Optimisation of the phenolic content and antioxidant activity of apple pomace aqueous extracts. CYTA - Journal of Food, 2015, 13, 293-299.	0.9	31
44	Optimization of the Aqueous Extraction of Phenolic Compounds from Olive Leaves. Antioxidants, 2014, 3, 700-712.	2.2	49
45	Optimized Aqueous Extraction of Saponins from Bitter Melon for Production of a Saponinâ€Enriched Bitter Melon Powder. Journal of Food Science, 2014, 79, E1372-81.	1.5	49
46	Microencapsulation of Gac Oil by Spray Drying: Optimization of Wall Material Concentration and Oil Load Using Response Surface Methodology. Drying Technology, 2014, 32, 385-397.	1.7	62
47	Greenhouse-grown bitter melon: production and quality characteristics. Journal of the Science of Food and Agriculture, 2014, 94, 1896-1903.	1.7	19
48	Microencapsulation of Gac oil: Optimisation of spray drying conditions using response surface methodology. Powder Technology, 2014, 264, 298-309.	2.1	89
49	From Apple to Juice—The Fate of Polyphenolic Compounds. Food Reviews International, 2013, 29, 276-293.	4.3	32
50	Effects of aqueous brewing solution pH on the extraction of the major green tea constituents. Food Research International, 2013, 53, 713-719.	2.9	37
51	The stability of natural red/pink food colours in ultrahighâ€ŧemperature (<scp>UHT</scp>) products. Journal of the Science of Food and Agriculture, 2013, 93, 2022-2027.	1.7	6
52	Effects of Gac aril microwave processing conditions on oil extraction efficiency, and β-carotene and lycopene contents. Journal of Food Engineering, 2013, 117, 486-491.	2.7	40
53	Optimisation of microwaveâ€assisted extraction of <scp>G</scp> ac oil at different hydraulic pressure, microwave and steaming conditions. International Journal of Food Science and Technology, 2013, 48, 1436-1444.	1.3	16
54	Gac Fruit: Nutrient and Phytochemical Composition, and Options for Processing. Food Reviews International, 2013, 29, 92-106.	4.3	39

COSTAS E STATHOPOULOS

#	Article	IF	CITATIONS
55	Effect of Drying Pre-treatments on the Yield and Bioactive Content of Oil Extracted from Gac Aril. International Journal of Food Engineering, 2013, 10, 103-112.	0.7	13
56	Improved extraction of green tea components from teabags using the microwave oven. Journal of Food Composition and Analysis, 2012, 27, 95-101.	1.9	19
57	Isolation of Green Tea Catechins and Their Utilization in the Food Industry. Food Reviews International, 2011, 27, 227-247.	4.3	95
58	Optimizing conditions for the extraction of catechins from green tea using hot water. Journal of Separation Science, 2011, 34, 3099-3106.	1.3	155
59	Optimum conditions for the water extraction of <scp>L</scp> â€theanine from green tea. Journal of Separation Science, 2011, 34, 2468-2474.	1.3	39
60	Textural and Rheological Characteristics of Sun-dried Banana Traditionally Prepared in the North-East of Thailand. Food Science and Technology Research, 2010, 16, 291-294.	0.3	1
61	Effect of egg yolk substitution by sweet whey protein isolate on texture, stability and colour of Gelatoâ€style vanilla ice cream. International Journal of Dairy Technology, 2010, 63, 593-598.	1.3	4
62	Effect of zinc fortifications on rheological properties and micro-structure of water-in-oil spreads containing κ-carrageenan. European Food Research and Technology, 2008, 227, 675-681.	1.6	7
63	A rheological evaluation of concentrated casein systems as replacement for gluten: calcium effects. International Journal of Dairy Technology, 2008, 61, 397-402.	1.3	14
64	Effect of heat on rheology, surface hydrophobicity and molecular weight distribution of glutens extracted from flours with different bread-making quality. Journal of Cereal Science, 2008, 47, 134-143.	1.8	57
65	Effect of heat on rheology of gluten fractions from flours with different bread-making quality. Journal of Cereal Science, 2006, 43, 322-330.	1.8	20
66	Utilization of Date By-Products in the Food Industry. Emirates Journal of Food and Agriculture, 0, , 808.	1.0	15