Patrick Y Sips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2031909/publications.pdf Version: 2024-02-01

DATRICK Y SIDS

#	Article	IF	CITATIONS
1	Phenotypic and Molecular Heterogeneity in Mandibulofacial Dysostoses: A Case Series From India. Cleft Palate-Craniofacial Journal, 2022, 59, 1346-1351.	0.5	3
2	Glyoxylate protects against cyanide toxicity through metabolic modulation. Scientific Reports, 2022, 12, 4982.	1.6	4
3	Loss of zebrafish atp6v1e1b, encoding a subunit of vacuolar ATPase, recapitulates human ARCL type 2C syndrome and identifies multiple pathobiological signatures. PLoS Genetics, 2021, 17, e1009603.	1.5	3
4	Bi-allelic premature truncating variants in LTBP1 cause cutis laxa syndrome. American Journal of Human Genetics, 2021, 108, 1095-1114.	2.6	19
5	An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. Journal of Experimental Pharmacology, 2021, Volume 13, 755-779.	1.5	5
6	Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing― Life Sciences, 2021, 285, 119953.	2.0	5
7	Clinical and Molecular Delineation of Cutis Laxa Syndromes: Paradigms for Elastic Fiber Homeostasis. Advances in Experimental Medicine and Biology, 2021, 1348, 273-309.	0.8	4
8	MEK1/2 Inhibition in Murine Heart and Aorta After Oral Administration of Refametinib Supplemented Drinking Water. Frontiers in Pharmacology, 2020, 11, 1336.	1.6	4
9	Spontaneous Right Ventricular Pseudoaneurysms and Increased Arrhythmogenicity in a Mouse Model of Marfan Syndrome. International Journal of Molecular Sciences, 2020, 21, 7024.	1.8	3
10	Ambulatory Electrocardiographic Monitoring and Ectopic Beat Detection in Conscious Mice. Sensors, 2020, 20, 3867.	2.1	6
11	Corrosion casting of the cardiovascular structure in adult zebrafish for analysis by scanning electron microscopy and Xâ€ray microtomography. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 2020, 49, 635-642.	0.3	6
12	Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases. Cardiovascular Research, 2020, 116, 2116-2130.	1.8	11
13	A homozygous pathogenic missense variant broadens the phenotypic and mutational spectrum of CREB3L1-related osteogenesis imperfecta. Human Molecular Genetics, 2019, 28, 1801-1809.	1.4	21
14	Screening drugs for myocardial disease in vivo with zebrafish: an expert update. Expert Opinion on Drug Discovery, 2019, 14, 343-353.	2.5	13
15	A heart for fibrillin: spatial arrangement in adult wild-type murine myocardial tissue. Histochemistry and Cell Biology, 2018, 150, 271-280.	0.8	11
16	Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8037-E8046.	3.3	77
17	Identification of specific metabolic pathways as druggable targets regulating the sensitivity to cyanide poisoning. PLoS ONE, 2018, 13, e0193889.	1.1	12
18	Cisplatin Analogs Confer Protection against Cyanide Poisoning. Cell Chemical Biology, 2017, 24, 565-575.e4.	2.5	17

PATRICK Y SIPS

#	Article	IF	CITATIONS
19	Sensitivity to Sevoflurane anesthesia is decreased in mice with a congenital deletion of Guanylyl Cyclase-1 alpha. BMC Anesthesiology, 2017, 17, 76.	0.7	10
20	Wars2 is a determinant of angiogenesis. Nature Communications, 2016, 7, 12061.	5.8	45
21	Androgen-sensitive hypertension associated with soluble guanylate cyclase-α ₁ deficiency is mediated by 20-HETE. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1790-H1800.	1.5	27
22	Androgen-sensitive hypertension associated with soluble guanylate cyclase alpha1 deficiency is mediated by 20-HETE. BMC Pharmacology & Toxicology, 2015, 16, .	1.0	0
23	S-Nitrosylation of Calcium-Handling Proteins in Cardiac Adrenergic Signaling and Hypertrophy. Circulation Research, 2015, 117, 793-803.	2.0	60
24	Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice. Nature Communications, 2015, 6, 8482.	5.8	64
25	New insights into the role of soluble guanylate cyclase in blood pressure regulation. Current Opinion in Nephrology and Hypertension, 2014, 23, 135-142.	1.0	33
26	Genetic modification of hypertension by sGCα1. Trends in Cardiovascular Medicine, 2013, 23, 312-318.	2.3	4
27	Pathophysiology of Hypertension in the Absence of Nitric Oxide/Cyclic GMP Signaling. Current Hypertension Reports, 2013, 15, 47-58.	1.5	41
28	Reduction of cardiomyocyte S-nitrosylation by S-nitrosoglutathione reductase protects against sepsis-induced myocardial depression. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1134-H1146.	1.5	38
29	Protein Sâ€nitrosylation regulates Ca2+ handling and myofilament Ca2+ sensitivity in betaâ€adrenergic signaling. FASEB Journal, 2013, 27, 921.5.	0.2	Ο
30	Identification of renin signaling as a blood pressure modifying mechanism in soluble guanylate cyclase α1-deficient mice. Nitric Oxide - Biology and Chemistry, 2012, 27, S25-S26.	1.2	0
31	Genetic modifiers of hypertension in soluble guanylate cyclase α1–deficient mice. Journal of Clinical Investigation, 2012, 122, 2316-2325.	3.9	28
32	Genetic modifiers of hypertension in soluble guanylate cyclase α1–deficient mice. Journal of Clinical Investigation, 2012, 122, 3024-3024.	3.9	1
33	The alpha1 isoform of soluble guanylate cyclase regulates cardiac contractility but is not required for ischemic preconditioning. Basic Research in Cardiology, 2011, 106, 635-643.	2.5	13
34	Genetic mapping of a modifier locus affecting hypertension in soluble guanylate cyclase α1 deficient mice. BMC Pharmacology, 2011, 11, .	0.4	0
35	Inhaled Nitric Oxide Improves Outcomes After Successful Cardiopulmonary Resuscitation in Mice. Circulation, 2011, 124, 1645-1653.	1.6	91
36	sGCα ₁ β ₁ attenuates cardiac dysfunction and mortality in murine inflammatory shock models. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H654-H663.	1.5	42

PATRICK Y SIPS

#	Article	IF	CITATIONS
37	Hydrogen Sulfide Improves Survival After Cardiac Arrest and Cardiopulmonary Resuscitation via a Nitric Oxide Synthase 3–Dependent Mechanism in Mice. Circulation, 2009, 120, 888-896.	1.6	188
38	Small intestinal motility in soluble guanylate cyclase α1 knockout mice. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 379, 473-487.	1.4	8
39	sGCα1β1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models. BMC Pharmacology, 2009, 9, .	0.4	0
40	Phenotypes of sGC mutant mice in basic conditions, disease and shock. BMC Pharmacology, 2009, 9, .	0.4	3
41	Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice*. Critical Care Medicine, 2009, 37, 256-262.	0.4	63
42	Gender-Specific Modulation of the Response to Arterial Injury by Soluble Guanylate Cyclase α1. Open Cardiovascular Medicine Journal, 2009, 3, 98-104.	0.6	4
43	Role of the soluble guanylyl cyclase α1/α2 subunits in the relaxant effect of CO and CORM-2 in murine gastric fundus. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 493-502.	1.4	14
44	Involvement of soluble guanylate cyclase α1 and α2, and SKCa channels in NANC relaxation of mouse distal colon. European Journal of Pharmacology, 2008, 589, 251-259.	1.7	18
45	O54. Targeting the NO-cGMP pathway: Phenotyping of NO-insensitive sGCβ1 H105F knockin mice. Nitric Oxide - Biology and Chemistry, 2008, 19, 32.	1.2	0
46	O55. Gender-specific hypertension and reaction to NO stimulation in sGCα1â^'/â^' mice. Nitric Oxide - Biology and Chemistry, 2008, 19, 32.	1.2	0
47	Role of the soluble guanylyl cyclase α1-subunit in mice corpus cavernosum smooth muscle relaxation. International Journal of Impotence Research, 2008, 20, 278-284.	1.0	16
48	Gender-specific hypertension and responsiveness to nitric oxide in sGCα1 knockout mice. Cardiovascular Research, 2008, 79, 179-186.	1.8	107
49	Functional role of the soluble guanylyl cyclase α1 subunit in vascular smooth muscle relaxationâ~†. Cardiovascular Research, 2007, 76, 149-159.	1.8	45
50	Soluble Guanylate Cyclase-α1 Deficiency Selectively Inhibits the Pulmonary Vasodilator Response to Nitric Oxide and Increases the Pulmonary Vascular Remodeling Response to Chronic Hypoxia. Circulation, 2007, 116, 936-943.	1.6	71
51	Targeting the NO – cGMP pathway: phenotyping of NO-insensitive sGCbeta1 H105F knockin mice. BMC Pharmacology, 2007, 7, .	0.4	4
52	Transgenic mice with a NO-insensitive soluble guanylate cyclase. BMC Pharmacology, 2007, 7, .	0.4	0
53	Gastric motility in soluble guanylate cyclase α ₁ knockâ€out mice. Journal of Physiology, 2007, 584, 907-920.	1.3	23
54	Systemic NO production during (septic) shock depends on parenchymal and not on hematopoietic cells: in vivo iNOS expression pattern in (septic) shock FASEB Journal 2006, 20, 2363-2365	0.2	65

PATRICK Y SIPS

#	Article	IF	CITATIONS
55	Anaphylactic shock depends on PI3K and eNOS-derived NO. Journal of Clinical Investigation, 2006, 116, 2244-2251.	3.9	115
56	NO-induced motility effects in distal colon of sGCα1 knockout mice. BMC Pharmacology, 2005, 5, P14.	0.4	0
57	NO-mediated vascular smooth muscle relaxation in sGCα1 knock-out mice. BMC Pharmacology, 2005, 5, P41.	0.4	1
58	Gender-specific hypertension in mice deficient in the alpha1 subunit of soluble guanylate cyclase. BMC Pharmacology, 2005, 5, P52.	0.4	0
59	Lessons from soluble guanylate cyclase alpha1 knockouts. BMC Pharmacology, 2005, 5, S36.	0.4	0