

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2031403/publications.pdf Version: 2024-02-01

Ymili

#	Article	IF	CITATIONS
1	Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy, 2016, 19, 165-175.	16.0	1,088
2	Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554, 224-228.	27.8	970
3	Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7094-7099.	7.1	769
4	Plasmonic Wood for Highâ€Efficiency Solar Steam Generation. Advanced Energy Materials, 2018, 8, 1701028.	19.5	701
5	All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy and Environmental Science, 2017, 10, 538-545.	30.8	602
6	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756.	21.0	584
7	Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. Nano Letters, 2017, 17, 565-571.	9.1	556
8	Reducing Interfacial Resistance between Garnetâ€Structured Solidâ€State Electrolyte and Liâ€Metal Anode by a Germanium Layer. Advanced Materials, 2017, 29, 1606042.	21.0	512
9	3Dâ€Printed, Allâ€inâ€One Evaporator for Highâ€Efficiency Solar Steam Generation under 1 Sun Illumination. Advanced Materials, 2017, 29, 1700981.	21.0	511
10	Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy and Environmental Science, 2017, 10, 1568-1575.	30.8	499
11	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	21.0	494
12	High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3584-3589.	7.1	412
13	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	14.6	364
14	Rich Mesostructures Derived from Natural Woods for Solar Steam Generation. Joule, 2017, 1, 588-599.	24.0	363
15	Woodâ€Based Nanotechnologies toward Sustainability. Advanced Materials, 2018, 30, 1703453.	21.0	359
16	Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2018, 10, 1104-1112.	8.0	327
17	Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy, 2017, 41, 201-209.	16.0	316
18	3Dâ€Printed Allâ€Fiber Liâ€lon Battery toward Wearable Energy Storage. Advanced Functional Materials, 2017, 27, 1703140.	14.9	270

#	Article	IF	CITATIONS
19	Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets andÂactivated carbon with high energy density. Journal of Power Sources, 2014, 246, 371-376.	7.8	268
20	Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano, 2017, 11, 11513-11520.	14.6	261
21	Highâ€Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. Advanced Energy Materials, 2018, 8, 1701616.	19.5	255
22	Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. CheM, 2018, 4, 544-554.	11.7	246
23	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. Nano Letters, 2017, 17, 3792-3797.	9.1	243
24	Extrusionâ€Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes. Advanced Materials, 2018, 30, e1705651.	21.0	241
25	Highly Conductive, Lightweight, Lowâ€Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors. Advanced Energy Materials, 2017, 7, 1700595.	19.5	210
26	Single Atom Array Mimic on Ultrathin MOF Nanosheets Boosts the Safety and Life of Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e1906722.	21.0	205
27	A carbon-based 3D current collector with surface protection for Li metal anode. Nano Research, 2017, 10, 1356-1365.	10.4	200
28	3D Wettable Framework for Dendriteâ€Free Alkali Metal Anodes. Advanced Energy Materials, 2018, 8, 1800635.	19.5	196
29	Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors. Nano Letters, 2016, 16, 3616-3623.	9.1	187
30	Three-Dimensional, Solid-State Mixed Electron–Ion Conductive Framework for Lithium Metal Anode. Nano Letters, 2018, 18, 3926-3933.	9.1	175
31	Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Advanced Energy Materials, 2018, 8, 1802398.	19.5	163
32	Hierarchically Porous, Ultrathick, "Breathable―Woodâ€Đerived Cathode for Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1701203.	19.5	161
33	Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. Journal of Materials Chemistry A, 2017, 5, 23085-23093.	10.3	158
34	In Situ Growth of Metal–Organic Frameworks in Three-Dimensional Aligned Lumen Arrays of Wood for Rapid and Highly Efficient Organic Pollutant Removal. Environmental Science & Technology, 2019, 53, 2705-2712.	10.0	157
35	MXene/Si@SiO _{<i>x</i>} @C Layer-by-Layer Superstructure with Autoadjustable Function for Superior Stable Lithium Storage. ACS Nano, 2019, 13, 2167-2175.	14.6	154
36	Enabling High-Areal-Capacity Lithium–Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. ACS Nano, 2017, 11, 4801-4807.	14.6	151

#	Article	IF	CITATIONS
37	Superflexible Wood. ACS Applied Materials & amp; Interfaces, 2017, 9, 23520-23527.	8.0	141
38	Electrodeposition of nickel sulfide on graphene-covered make-up cotton as a flexible electrode material for high-performance supercapacitors. Journal of Power Sources, 2015, 274, 943-950.	7.8	133
39	3D Printing of Tunable Energy Storage Devices with Both High Areal and Volumetric Energy Densities. Advanced Energy Materials, 2019, 9, 1802578.	19.5	132
40	Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. Journal of Power Sources, 2015, 300, 309-317.	7.8	129
41	A Freestanding Flexible Singleâ€Atom Cobaltâ€Based Multifunctional Interlayer toward Reversible and Durable Lithium‧ulfur Batteries. Small Methods, 2020, 4, 1900701.	8.6	123
42	Natureâ€Inspired Triâ€Pathway Design Enabling Highâ€Performance Flexible Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1802964.	19.5	121
43	Scalable, anisotropic transparent paper directly from wood for light management in solar cells. Nano Energy, 2017, 36, 366-373.	16.0	117
44	Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter, 2021, 4, 1142-1188.	10.0	116
45	Atomically Dispersed Co–P ₃ on CdS Nanorods with Electronâ€Rich Feature Boosts Photocatalysis. Advanced Materials, 2020, 32, e1904249.	21.0	105
46	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176.	8.6	97
47	Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nature Energy, 2018, 3, 148-156.	39.5	96
48	Textile Inspired Lithium–Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. Advanced Materials, 2018, 30, 1704907.	21.0	92
49	Two Birds with One Stone: Interfacial Engineering of Multifunctional Janus Separator for Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, e2107638.	21.0	91
50	Co-doped 1T-MoS2 nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries. Nano Research, 2019, 12, 2218-2223.	10.4	88
51	Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. Nano Research, 2019, 12, 2259-2267.	10.4	85
52	Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today, 2019, 28, 100774.	11.9	81
53	Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. Journal of Electroanalytical Chemistry, 2014, 727, 154-162.	3.8	80
54	Breathâ€Figure Selfâ€Assembled Low ost Janus Fabrics for Highly Efficient and Stable Solar Desalination. Advanced Functional Materials, 2022, 32, .	14.9	80

#	Article	IF	CITATIONS
55	In Situ "Chainmail Catalyst―Assembly in Lowâ€Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. Advanced Energy Materials, 2018, 8, 1801289.	19.5	79
56	Advanced Multifunctional Electrocatalysts for Energy Conversion. ACS Energy Letters, 2019, 4, 1672-1680.	17.4	78
57	Stabilizing the Garnet Solid-Electrolyte/Polysulfide Interface in Li–S Batteries. Chemistry of Materials, 2017, 29, 8037-8041.	6.7	73
58	Lewisâ€Acidic PtIr Multipods Enable Highâ€Performance Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2021, 60, 26592-26598.	13.8	72
59	Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock. Nano Letters, 2016, 16, 5553-5558.	9.1	67
60	Enhanced Cathode and Anode Compatibility for Boosting Both Energy and Power Densities of Na/K-Ion Hybrid Capacitors. Matter, 2019, 1, 893-910.	10.0	65
61	A highly efficient and durable water splitting system: platinum sub-nanocluster functionalized nickel–iron layered double hydroxide as the cathode and hierarchical nickel–iron selenide as the anode. Journal of Materials Chemistry A, 2019, 7, 2831-2837.	10.3	65
62	Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mechanics Letters, 2019, 29, 100463.	4.1	65
63	Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. Journal of Power Sources, 2015, 279, 138-145.	7.8	60
64	Facile preparation of three-dimensional multilayer porous MnO2/reduced graphene oxide composite and its supercapacitive performance. Journal of Power Sources, 2014, 271, 582-588.	7.8	57
65	Partially reduced Pd single atoms on CdS nanorods enable photocatalytic reforming of ethanol into high value-added multicarbon compound. CheM, 2021, 7, 1033-1049.	11.7	55
66	Hierarchical copper cobalt sulfides nanowire arrays for high-performance asymmetric supercapacitors. Applied Surface Science, 2019, 487, 198-205.	6.1	50
67	Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts toward Hydrogen Evolution in Both Alkaline and Acidic Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 7804-7811.	6.7	48
68	Nanomanufacturing of graphene nanosheets through nano-hole opening and closing. Materials Today, 2019, 24, 26-32.	14.2	48
69	Metal Single Atom Strategy Greatly Boosts Photocatalytic Methyl Activation and C–C Coupling for the Coproduction of High-Value-Added Multicarbon Compounds and Hydrogen. ACS Catalysis, 2020, 10, 9109-9114.	11.2	47
70	Carbon- and Binder-Free Core–Shell Nanowire Arrays for Efficient Ethanol Electro-Oxidation in Alkaline Medium. ACS Applied Materials & Interfaces, 2018, 10, 4705-4714.	8.0	46
71	Engineering e _g Orbital Occupancy of Pt with Au Alloying Enables Reversible Liâ~O ₂ Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	46
72	Liâ^'N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	45

#	Article	IF	CITATIONS
73	A novel asymmetric supercapacitor with buds-like Co(OH)2 used as cathode materials and activated carbon as anode materials. Journal of Electroanalytical Chemistry, 2015, 741, 93-99.	3.8	44
74	Polyaniline-modified porous carbon tube bundles composite for high-performance asymmetric supercapacitors. Electrochimica Acta, 2018, 292, 458-467.	5.2	43
75	Highâ€Temperature Atomic Mixing toward Wellâ€Dispersed Bimetallic Electrocatalysts. Advanced Energy Materials, 2018, 8, 1800466.	19.5	43
76	Synthesis of honeycomb-like NiS 2 /NiO nano-multiple materials for high performance supercapacitors. Electrochimica Acta, 2015, 173, 209-214.	5.2	42
77	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	30.8	42
78	Cesium Lead Bromide Perovskite-Based Lithium–Oxygen Batteries. Nano Letters, 2021, 21, 4861-4867.	9.1	39
79	Synthesis of Hierarchically Porous Sandwichâ€Like Carbon Materials for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2016, 22, 16863-16871.	3.3	38
80	Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. Journal of Energy Chemistry, 2022, 71, 192-200.	12.9	37
81	K2.25Ni0.55Co0.37Fe(CN)6 nanoparticle connected by cross-linked carbon nanotubes conductive skeletons for high-performance energy storage. Chemical Engineering Journal, 2017, 328, 834-843.	12.7	34
82	Coupled and decoupled hierarchical carbon nanomaterials toward high-energy-density quasi-solid-state Na-Ion hybrid energy storage devices. Energy Storage Materials, 2019, 23, 530-538.	18.0	32
83	Ruthenium-nickel-cobalt alloy nanoparticles embedded in hollow carbon microtubes as a bifunctional mosaic catalyst for overall water splitting. Journal of Colloid and Interface Science, 2022, 612, 710-721.	9.4	31
84	SnSe2 nanocrystals coupled with hierarchical porous carbon microspheres for long-life sodium ion battery anode. Science China Materials, 2020, 63, 483-491.	6.3	30
85	Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse. Nano Letters, 2017, 17, 5817-5822.	9.1	29
86	In Situ, Fast, Highâ€īemperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix. Advanced Energy Materials, 2017, 7, 1601783.	19.5	27
87	All-in-One Compact Architecture toward Wearable All-Solid-State, High-Volumetric-Energy-Density Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 23834-23841.	8.0	25
88	Co@MWNTs-Plastic: A novel electrode for NaBH4 oxidation. Electrochimica Acta, 2015, 156, 102-107.	5.2	23
89	Self N-Doped Porous Interconnected Carbon Nanosheets Material for Supercapacitors. Acta Chimica Sinica, 2018, 76, 107.	1.4	22
90	Polyaniline coated 3D crosslinked carbon nanosheets for high-energy-density supercapacitors. Applied Surface Science, 2019, 493, 506-513.	6.1	21

#	Article	IF	CITATIONS
91	Nitrogen-doped graphene oxide/cupric oxide as an anode material for lithium ion batteries. RSC Advances, 2014, 4, 64756-64762.	3.6	20
92	PPy wrapped MnO2@C/TiO2 nanowire arrays for electrochemical energy storage. Electrochimica Acta, 2015, 182, 1153-1158.	5.2	19
93	Compact self-standing layered film assembled by V2O5·nH2O/CNTs 2D/1D composites for high volumetric capacitance flexible supercapacitors. Science China Materials, 2019, 62, 936-946.	6.3	19
94	High-performance asymmetric supercapacitor assembled with three-dimensional, coadjacent graphene-like carbon nanosheets and its composite. Journal of Electroanalytical Chemistry, 2018, 823, 474-481.	3.8	18
95	Visualization of battery materials and their interfaces/interphases using cryogenic electron microscopy. Materials Today, 2022, 58, 238-274.	14.2	17
96	Facile preparation of transition metal oxide–metal composites with unique nanostructures and their electrochemical performance as energy storage material. Journal of Materials Chemistry A, 2013, 1, 14246.	10.3	16
97	FeOOH electrodeposited on Ag decorated ZnO nanorods for electrochemical energy storage. RSC Advances, 2016, 6, 39166-39171.	3.6	16
98	In Situ Formed Edge-Rich Ni ₃ S ₂ -NiOOH Heterojunctions for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2022, 169, 054532.	2.9	15
99	Methanol electrooxidation on flexible multi-walled carbon nanotube-modified sponge-based nickel electrode. Journal of Solid State Electrochemistry, 2015, 19, 3027-3034.	2.5	13
100	Nanocellulose and Its Derivatives toward Advanced Lithium Sulfur Batteries. , 2021, 3, 1130-1142.		13
101	Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode with Integrated Lithium Storage Behaviors. ACS Applied Materials & Interfaces, 2017, 9, 15470-15476.	8.0	11
102	Nickel cobalt oxide nanowiresâ€modified hollow carbon tubular bundles for highâ€performance sodiumâ€ion hybrid capacitors. International Journal of Energy Research, 2020, 44, 3883-3892.	4.5	11
103	Engineering e _g Orbital Occupancy of Pt with Au Alloying Enables Reversible Liã~O ₂ Batteries. Angewandte Chemie, 2022, 134, .	2.0	11
104	A double-chamber energy storage device with dual ionic electrolyte enabling high energy density. Electrochimica Acta, 2018, 274, 31-39.	5.2	8
105	Role of binary metal chalcogenides in extending the limits of energy storage systems: Challenges and possible solutions. Science China Materials, 2022, 65, 559-592.	6.3	8
106	Reduced graphene oxide decorated on MnO2 nanoflakes grown on C/TiO2 nanowire arrays for electrochemical energy storage. RSC Advances, 2015, 5, 87521-87527.	3.6	7
107	One-Step, Catalyst-Free, Scalable in Situ Synthesis of Single-Crystal Aluminum Nanowires in Confined Graphene Space. ACS Applied Materials & Interfaces, 2019, 11, 6009-6014.	8.0	7
108	Lewisâ€Acidic PtIr Multipods Enable Highâ€Performance Li–O ₂ Batteries. Angewandte Chemie, 2021, 133, 26796-26802.	2.0	6

#	Article	IF	CITATIONS
109	Economical, facile synthesis of network-like carbon nanosheets and their use as an enhanced electrode material for sensitive detection of ascorbic acid. RSC Advances, 2017, 7, 32020-32026.	3.6	5
110	Li–N Interaction Induced Deep Eutectic Gel Polymer Electrolyte for High Performance Lithiumâ€Metal Batteries. Angewandte Chemie, 0, , .	2.0	0