
Shigeyuki Iwasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2031322/publications.pdf Version: 2024-02-01

SHICEVUKI MASA

#	Article	IF	CITATIONS
1	A heat-melt adhesive-assisted transferable electrode films. Scientific Reports, 2021, 11, 36.	3.3	0
2	Electrochemical Characterization of TEMPO Radical in Ionic Liquids. Electrochemistry, 2020, 88, 34-38.	1.4	13
3	Enhancement of rapid charging capability of organic radical battery using ethylene carbonate-based electrolyte containing LiFSI. Journal of Power Sources, 2018, 402, 157-162.	7.8	10
4	Flexibility and High-Rate Discharge Properties of Organic Radical Batteries with Gel-State Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
5	Flexibility and High-Rate Discharge Properties of Organic Radical Batteries with Gel-State Electrodes. Journal of the Electrochemical Society, 2017, 164, A884-A888.	2.9	20
6	Effect of charge transportation on high-rate discharge properties of organic radical batteries with gel-state cathode. Journal of Electroanalytical Chemistry, 2017, 805, 171-176.	3.8	8
7	Performance Improvement of Li Ion Battery with Non-Flammable TMP Mixed Electrolyte by Optimization of Lithium Salt Concentration and SEI Preformation Technique on Graphite Anode. Journal of the Electrochemical Society, 2014, 161, A831-A834.	2.9	30
8	The production of an electrochemical capacitor electrode using holey single-wall carbon nanohorns with high specific surface area. Carbon, 2012, 50, 5569-5573.	10.3	40
9	有機ラã,,ã,«ãƒ«é›»æ±ãë薄型電æ±ã®æŠ€è¡"å⊶å•. Journal of Japan Institute of Electronics Packaging	g, 20 1.1 , 14	, 427-431.
10	Synthesis of well-defined norbornene–lactone-functionalized polymers via ATRP. Polymer Bulletin, 2010, 64, 867-875.	3.3	4
11	Effect of Ethylene Oxide Structures in TEMPO Polymers on High Rate Discharge Properties. Electrochemical and Solid-State Letters, 2009, 12, A194.	2.2	11
12	Syntheses and Electrochemical Properties of TEMPO Radical Substituted Silicones: Active Material for Organic Radical Batteries. Macromolecular Chemistry and Physics, 2009, 210, 1402-1407.	2.2	42
13	Fabrication of a Practical and Polymerâ€Rich Organic Radical Polymer Electrode and its Rate Dependence. Macromolecular Rapid Communications, 2008, 29, 1635-1639.	3.9	57
14	Properties and Lithographic Capability of Sulfonium Salts with Aromatic Cyclic Ketone Group for ArF Chemically Amplified Resist. Japanese Journal of Applied Physics, 2007, 46, 111-114.	1.5	1
15	Cationic Polymerization of Poly(vinyl ether) Bearing a TEMPO Radical: A New Cathodeâ€Active Material for Organic Radical Batteries. Macromolecular Rapid Communications, 2007, 28, 1929-1933.	3.9	117
16	Al-laminated film packaged organic radical battery for high-power applications. Journal of Power Sources, 2007, 163, 1110-1113.	7.8	113
17	Cell properties for modified PTMA cathodes of organic radical batteries. Journal of Power Sources, 2007, 165, 398-402.	7.8	143
18	High-rate capable organic radical cathodes for lithium rechargeable batteries. Journal of Power Sources, 2007, 165, 870-873.	7.8	132

SHIGEYUKI IWASA

#	Article	IF	CITATIONS
19	Organic Radical Battery. Journal of the Society of Mechanical Engineers, 2007, 110, 194-195.	0.0	О
20	Electrochemical and spectroscopic measurements for stable nitroxyl radicals. Electrochimica Acta, 2006, 52, 921-927.	5.2	69
21	Organic radical battery: nitroxide polymers as a cathode-active material. Electrochimica Acta, 2004, 50, 827-831.	5.2	460
22	Photo-acid generator having aromatic ketone structure for ArF chemically amplified resist. Microelectronic Engineering, 2002, 61-62, 771-776.	2.4	2
23	Thermally Stable Alkylsulfonium Salts for ArF Excimer Laser Resists Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2001, 14, 357-362.	0.3	6
24	ArF Chemically Amplified Positive Resist Based on Alicyclic Lactone Polymer. Japanese Journal of Applied Physics, 2001, 40, 7162-7165.	1.5	11
25	Design of Transparent and Thermally Stable Photo-Acid Generators for 193-nm Lithography Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2000, 13, 235-236.	0.3	1
26	Molecular design and development of photoresists for ArF excimer laser lithography. Polymers for Advanced Technologies, 2000, 11, 560-569.	3.2	10
27	Chemically Amplified Negative Resists Based on Alicyclic Acrylate Polymers for 193-nm Lithography Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1999, 12, 487-492.	0.3	8
28	Novel negative photoresist based on polar alicyclic polymers for ArF excimer laser lithography. , 1998, , .		7
29	Adhesion characteristics of alicyclic polymers for use in ArF excimer laser lithography. , 1998, , .		2
30	ArF Chemically Amplified Negative Resist Using Alicyclic Epoxy Polymer Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1998, 11, 507-512.	0.3	2
31	Function-integrated alicyclic polymer for ArF chemically amplified resists. , 1997, , .		12
32	Effect of polymer structure on dissolution-rate characteristics in carboxylated alicyclic polymers for 193-nm lithography. , 1997, , .		3
33	Chemically Amplified Resist Based on High Etch-Resistant Polymers for 193-nm Lithography Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1997, 10, 561-569.	0.3	15
34	Design and Characterization of Alicyclic Polymers with Alkoxy-ethyl Protecting Groups for ArF Chemically Amplified Resists Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 1996, 9, 447-456.	0.3	24
35	Chemically Amplified Resist for ArF Excimer Laser Lithography Composed of an Alkylsulfonium Salt Photoacid Generator and an Alicyclic Terpolymer Kobunshi Ronbunshu, 1996, 53, 239-247.	0.2	1
36	<title>Positive chemically amplified resist for ArF excimer laser lithography composed of a novel transparent photoacid generator and an alicyclic terpolymer</title> ., 1995, , .		26

#	Article	IF	CITATIONS
37	Living Cationic Polymerization of Benzyl Vinyl Ether and Its Block Copolymers with Narrow Molecular Weight Distribution. Polymer Journal, 1994, 26, 912-919.	2.7	10

³⁸ Transparent photoacid generator (ALS) for ArF excimer laser lithography and chemically amplified resist. , 1994, , .

15