Anita L Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2031275/publications.pdf

Version: 2024-02-01

107 3,987 34 58 papers citations h-index g-index

110 110 110 110 2656

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Retrospective study of bacterial and fungal causes of abortion in domestic ruminants in northern regions of South Africa (2006–2016). Australian Veterinary Journal, 2021, 99, 66-71.	0.5	4
2	Zoonotic Tuberculosis – The Changing Landscape. International Journal of Infectious Diseases, 2021, 113, S68-S72.	1.5	29
3	Drug-Resistant Tuberculosis in Pet Ring-Tailed Lemur, Madagascar. Emerging Infectious Diseases, 2021, 27, 977-979.	2.0	7
4	Tuberculosis patients at the human-animal interface: Potential zooanthroponotic and zoonotic transmission. One Health, 2021, 13, 100319.	1.5	5
5	Pathogen detection and disease diagnosis in wildlife: challenges and opportunities. OIE Revue Scientifique Et Technique, 2021, 40, 105-118.	0.5	5
6	Mycobacterium bovis prevalence affects the performance of a commercial serological assay for bovine tuberculosis in African buffaloes. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 70, 101369.	0.7	11
7	Wildlife-cattle interactions emerge as drivers of bovine tuberculosis in traditionally farmed cattle. Preventive Veterinary Medicine, 2020, 174, 104847.	0.7	12
8	Zoonotic tuberculosis—a call for an open One Health debate. Lancet Infectious Diseases, The, 2020, 20, 642-644.	4.6	6
9	Challenges for controlling bovine tuberculosis in South Africa. Onderstepoort Journal of Veterinary Research, 2020, 87, e1-e8.	0.6	23
10	Tracing cross species transmission of Mycobacterium bovis at the wildlife/livestock interface in South Africa. BMC Microbiology, 2020, 20, 49.	1.3	18
11	Risk practices for bovine tuberculosis transmission to cattle and livestock farming communities living at wildlife-livestock-human interface in northern KwaZulu Natal, South Africa. PLoS Neglected Tropical Diseases, 2020, 14, e0007618.	1.3	24
12	Tuberculosis in African Wildlife. , 2019, , 57-72.		2
13	Molecular Epidemiology of Mycobacterium bovis in Africa. , 2019, , 127-169.		5
14	Risk Factors for Zoonotic Tuberculosis at the Wildlife–Livestock–Human Interface in South Africa. Pathogens, 2019, 8, 101.	1.2	19
15	Bovine TB Zoonosis in Africa. , 2019, , 31-40.		O
16	Prevalence of Mycobacterium bovis infection in traditionally managed cattle at the wildlife-livestock interface in South Africa in the absence of control measures. Veterinary Research Communications, 2019, 43, 155-164.	0.6	14
17	First detection of <i>Mycobacterium bovis </i> infection in Giraffe (<i>Giraffa camelopardalis </i>) in the Greater Kruger National Park Complex: Role and implications. Transboundary and Emerging Diseases, 2019, 66, 2264-2270.	1.3	9
18	Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Veterinary Research, 2019, 15, 198.	0.7	219

#	Article	IF	CITATIONS
19	Detection of native interferon- \hat{l}^3 in nyala (Tragelaphus angasii): Towards diagnosing tuberculosis. Onderstepoort Journal of Veterinary Research, 2019, 86, e1-e3.	0.6	2
20	BTB Control Strategies in Livestock and Wildlife in South Africa. , 2019, , 387-401.		0
21	Cross reactive immune responses in cattle arising from exposure to Mycobacterium bovis and non-tuberculous mycobacteria. Preventive Veterinary Medicine, 2018, 152, 16-22.	0.7	29
22	Non-tuberculous Mycobacterium species causing mycobacteriosis in farmed aquatic animals of South Africa. BMC Microbiology, 2018, 18, 32.	1.3	32
23	Prevalence of bovine tuberculosis in cattle, goats, and camels of traditional livestock raising communities in Eritrea. BMC Veterinary Research, 2018, 14, 73.	0.7	7
24	Farm-level risk factors associated with bovine tuberculosis in the dairy sector in Eritrea. Transboundary and Emerging Diseases, 2018, 65, 105-113.	1.3	6
25	Mycobacterial infections in equids: Clinical characteristics and diagnostic techniques. Equine Veterinary Education, 2018, 30, 197-199.	0.3	1
26	Tuberculosis serosurveillance and management practices of captive African elephants (<i>Loxodonta) Tj ETQq0 Diseases, 2018, 65, e344-e354.</i>	0 0 rgBT /0 1.3	Overlock 10 T 9
27	Comparative proteomics identified immune response proteins involved in response to vaccination with heat-inactivated Mycobacterium bovis and mycobacterial challenge in cattle. Veterinary Immunology and Immunopathology, 2018, 206, 54-64.	0.5	8
28	Genetic profiling of Mycobacterium bovis strains from slaughtered cattle in Eritrea. PLoS Neglected Tropical Diseases, 2018, 12, e0006406.	1.3	34
29	Mycobacterium komaniense sp. nov., a rapidly growing non-tuberculous Mycobacterium species detected in South Africa. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 1526-1532.	0.8	7
30	Isolation and Potential for Transmission of <i>Mycobacterium bovis </i> at Human-livestock-wildlife Interface of the Serengeti Ecosystem, Northern Tanzania. Transboundary and Emerging Diseases, 2017, 64, 815-825.	1.3	28
31	Tuberculosis in Rhinoceros: An Underrecognized Threat?. Transboundary and Emerging Diseases, 2017, 64, 1071-1078.	1.3	27
32	Mycobacterial Arthritis and Synovitis in Painted Reed Frogs (Hyperolius marmoratus). Journal of Comparative Pathology, 2017, 156, 275-280.	0.1	10
33	Progenitor strain introduction of Mycobacterium bovis at the wildlife-livestock interface can lead to clonal expansion of the disease in a single ecosystem. Infection, Genetics and Evolution, 2017, 51, 235-238.	1.0	35
34	Original Mycobacterial Sin, a consequence of highly homologous antigens?. Veterinary Microbiology, 2017, 203, 286-293.	0.8	7
35	DIAGNOSIS AND IMPLICATIONS OF <i>MYCOBACTERIUM BOVIS</i> INFECTION IN BANDED MONGOOSES (<i>MUNGOS MUNGO</i>) IN THE KRUGER NATIONAL PARK, SOUTH AFRICA. Journal of Wildlife Diseases, 2017, 53, 19-29.	0.3	15
36	The Kinetics of the Humoral and Interferon-Gamma Immune Responses to Experimental Mycobacterium bovis Infection in the White Rhinoceros (Ceratotherium simum). Frontiers in Immunology, 2017, 8, 1831.	2.2	16

#	Article	IF	Citations
37	Experimental Mycobacterium bovis infection in three white rhinoceroses (Ceratotherium simum): Susceptibility, clinical and anatomical pathology. PLoS ONE, 2017, 12, e0179943.	1.1	24
38	Immune response profiles of calves following vaccination with live BCG and inactivated Mycobacterium bovis vaccine candidates. PLoS ONE, 2017, 12, e0188448.	1.1	17
39	Mycobacterium malmesburyense sp. nov., a non-tuberculous species of the genus Mycobacterium revealed by multiple gene sequence characterization. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 832-838.	0.8	15
40	Tuberculosis Infection: Occurrence and Risk Factors in Presumptive Tuberculosis Patients of the Serengeti Ecosystem in Tanzania. The East African Health Research Journal, 2017, 1, 19-30.	0.6	1
41	Comparative Genomics and Proteomic Analysis of Four Non-tuberculous Mycobacterium Species and Mycobacterium tuberculosis Complex: Occurrence of Shared Immunogenic Proteins. Frontiers in Microbiology, 2016, 7, 795.	1.5	30
42	Prevalence and risk factors of bovine tuberculosis in dairy cattle in Eritrea. BMC Veterinary Research, 2016, 12, 80.	0.7	17
43	Isolation and molecular characterization of Mycobacterium bovis causing pulmonary tuberculosis and epistaxis in a Thoroughbred horse. BMC Veterinary Research, 2016, 12, 179.	0.7	7
44	Field application of immunoassays for the detection of Mycobacterium bovis infection in the African buffalo (Syncerus caffer). Veterinary Immunology and Immunopathology, 2016, 169, 68-73.	0.5	18
45	WILDLIFE ON THE MOVE: A HIDDEN TUBERCULOSIS THREAT TO CONSERVATION AREAS AND GAME FARMS THROUGH INTRODUCTION OF UNTESTED ANIMALS. Journal of Wildlife Diseases, 2016, 52, 837-843.	0.3	24
46	Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS ONE, 2016, 11, e0154571.	1.1	41
47	Characteristics of tuberculosis patients and the evaluation of compliance to the national TB management guidelines at clinics in a rural community from Mpumalanga province, South Africa. Southern African Journal of Infectious Diseases, 2016, 31, 135-137.	0.3	2
48	Characteristics of tuberculosis patients and the evaluation of compliance to the national TB management guidelines at clinics in a rural community from Mpumalanga province, South Africa. Southern African Journal of Infectious Diseases, 2015, 31, 135-137.	0.3	0
49	Spillover of <i>Mycobacterium bovis</i> from Wildlife to Livestock, South â€ʿAfrica. Emerging Infectious Diseases, 2015, 21, 448-451.	2.0	55
50	Genetic diversity of Mycobacterium tuberculosis isolated from tuberculosis patients in the Serengeti ecosystem in Tanzania. Tuberculosis, 2015, 95, 170-178.	0.8	24
51	Raising the Political Profile of the Neglected Zoonotic Diseases: Three Complementary European Commission-Funded Projects to Streamline Research, Build Capacity and Advocate for Control. PLoS Neglected Tropical Diseases, 2015, 9, e0003505.	1.3	8
52	Bovine Tuberculosis and Brucellosis in Cattle and African Buffalo in the Limpopo National Park, Mozambique. Transboundary and Emerging Diseases, 2015, 62, 632-638.	1.3	19
53	Longevity of Mycobacterium bovis in Raw and Traditional Souring Milk as a Function of Storage Temperature and Dose. PLoS ONE, 2015, 10, e0129926.	1.1	26
54	Species diversity of non-tuberculous mycobacteria isolated from humans, livestock and wildlife in the Serengeti ecosystem, Tanzania. BMC Infectious Diseases, 2014, 14, 616.	1.3	32

#	Article	IF	CITATIONS
55	An assessment of Zoonotic and Production Limiting Pathogens in Rusa Deer (<i>Cervus timorensis) Tj ETQq1 1 0.</i>	784314 rg 1.3	BT /Overlo
56	Evidence of increasing intra and inter-species transmission of Mycobacterium bovis in South Africa: Are we losing the battle? Preventive Veterinary Medicine, 2014, 115, 10-17.	0.7	72
57	Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania. BMC Veterinary Research, 2013, 9, 267.	0.7	39
58	Evaluation of the Discriminatory Power of Variable Number of Tandem Repeat Typing of <i>Mycobacterium bovis </i> Isolates from Southern Africa. Transboundary and Emerging Diseases, 2013, 60, 111-120.	1.3	27
59	A review of bovine tuberculosis at the wildlife–livestock–human interface in sub-Saharan Africa. Epidemiology and Infection, 2013, 141, 1342-1356.	1.0	89
60	Facts and dilemmas in diagnosis of tuberculosis in wildlife. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 269-285.	0.7	46
61	Prevalence and Distribution of Non-Tuberculous Mycobacteria (NTM) in Cattle, African Buffaloes (<i>Syncerus caffer</i>) and their Environments in South Africa. Transboundary and Emerging Diseases, 2013, 60, 74-84.	1.3	40
62	Towards Establishing a Rhinoceros-Specific Interferon-Gamma (IFN- \hat{l}^3) Assay for Diagnosis of Tuberculosis. Transboundary and Emerging Diseases, 2013, 60, 60-66.	1.3	16
63	Preliminary Assessment of Bovine Tuberculosis at the Livestock/Wildlife Interface in two Protected Areas of Northern Botswana. Transboundary and Emerging Diseases, 2013, 60, 28-36.	1.3	13
64	Preface. Transboundary and Emerging Diseases, 2013, 60, i-i.	1.3	7
65	The Elephant Interferon Gamma Assay: A Contribution to Diagnosis of Tuberculosis in Elephants. Transboundary and Emerging Diseases, 2013, 60, 53-59.	1.3	24
66	<i>Mycobacterium tuberculosis</i> at the Human/Wildlife Interface in a High TB Burden Country. Transboundary and Emerging Diseases, 2013, 60, 46-52.	1.3	23
67	INFECTION OF AFRICAN BUFFALO (SYNCERUS CAFFER) BY ORYX BACILLUS, A RARE MEMBER OF THE ANTELOPE CLADE OF THE MYCOBACTERIUM TUBERCULOSIS COMPLEX. Journal of Wildlife Diseases, 2012, 48, 849-857.	0.3	31
68	Development of a lion-specific interferon-gamma assay. Veterinary Immunology and Immunopathology, 2012, 149, 292-297.	0.5	15
69	The African buffalo: A villain for inter-species spread of infectious diseases in southern Africa. Onderstepoort Journal of Veterinary Research, 2012, 79, 453.	0.6	53
70	Molecular characterisation of <i>Mycobacterium bovis</i> isolated from African buffaloes (<i>Syncerus caffer</i>) in Hluhluwe-iMfolozi Park in KwaZulu-Natal, South Africa. Onderstepoort Journal of Veterinary Research, 2011, 78, 232.	0.6	34
71	Approaches towards optimising the gamma interferon assay for diagnosing Mycobacterium bovis infection in African buffalo (Syncerus caffer). Preventive Veterinary Medicine, 2011, 98, 142-151.	0.7	58
72	European 1: A globally important clonal complex of Mycobacterium bovis. Infection, Genetics and Evolution, 2011, 11, 1340-1351.	1.0	107

#	Article	IF	Citations
73	African 2, a Clonal Complex of <i>Mycobacterium bovis</i> Epidemiologically Important in East Africa. Journal of Bacteriology, 2011, 193, 670-678.	1.0	96
74	Mycobacterium bovis at the animal–human interface: A problem, or not?. Veterinary Microbiology, 2010, 140, 371-381.	0.8	248
75	Intradermal tuberculin testing of wild African lions (Panthera leo) naturally exposed to infection with Mycobacterium bovis. Veterinary Microbiology, 2010, 144, 384-391.	0.8	43
76	An investigation of the effects of secondary processing on Mycobacterium spp. in naturally infected game meat and organs. Journal of the South African Veterinary Association, 2010, 81, 166-169.	0.2	8
77	Bovine Tuberculosis in Buffaloes, Southern Africa. Emerging Infectious Diseases, 2010, 16, 884-885.	2.0	50
78	Novel <i>Mycobacterium tuberculosis</i> Complex Pathogen, <i>M. mungi</i> . Emerging Infectious Diseases, 2010, 16, 1296-1299.	2.0	204
79	BCG vaccination failed to protect yearling African buffaloes (Syncerus caffer) against experimental intratonsilar challenge with Mycobacterium bovis. Veterinary Immunology and Immunopathology, 2010, 137, 84-92.	0.5	31
80	Cooking and drying as effective mechanisms in limiting the zoonotic effect of Mycobacterium bovis in beef. Journal of the South African Veterinary Association, 2009, 80, 142-145.	0.2	12
81	Zoonotic tuberculosis and brucellosis in Africa: neglected zoonoses or minor public-health issues? The outcomes of a multi-disciplinary workshop. Annals of Tropical Medicine and Parasitology, 2009, 103, 401-411.	1.6	69
82	Pulmonary Infection due to Mycobacterium bovis in a Black Rhinoceros (Diceros bicornis minor) in South Africa. Journal of Wildlife Diseases, 2009, 45, 1187-1193.	0.3	28
83	Accuracy of Three Diagnostic Tests for Determining Mycobacterium Bovis Infection Status in Live-Sampled Wild Meerkats (Suricata Suricatta). Journal of Veterinary Diagnostic Investigation, 2009, 21, 31-39.	0.5	35
84	African 1, an Epidemiologically Important Clonal Complex of <i>Mycobacterium bovis</i> Dominant in Mali, Nigeria, Cameroon, and Chad. Journal of Bacteriology, 2009, 191, 1951-1960.	1.0	125
85	Molecular epidemiology of Mycobacterium bovis isolates from free-ranging wildlife in South African game reserves. Veterinary Microbiology, 2009, 133, 335-343.	0.8	92
86	Low crossâ€reactivity of Tâ€cell responses against lipids from <i>Mycobacterium bovis</i> and <i>M. avium paratuberculosis</i> during natural infection. European Journal of Immunology, 2009, 39, 3031-3041.	1.6	29
87	Disease, predation and demography: assessing the impacts of bovine tuberculosis on African buffalo by monitoring at individual and population levels. Journal of Applied Ecology, 2009, 46, 467-475.	1.9	71
88	Comparative field evaluation of two rapid immunochromatographic tests for the diagnosis of bovine tuberculosis in African buffaloes (Syncerus caffer). Veterinary Immunology and Immunopathology, 2009, 127, 186-189.	0.5	13
89	Bovine tuberculosis as a model for human tuberculosis: advantages over small animal models. Microbes and Infection, 2008, 10, 711-715.	1.0	59
90	High Mycobacterium bovis genetic diversity in a low prevalence setting. Veterinary Microbiology, 2008, 126, 151-159.	0.8	68

#	Article	IF	Citations
91	<i>Mycobacterium Fortuitum</i> Infection Interference with <i>Mycobacterium Bovis</i> Diagnostics: Natural Infection Cases and a Pilot Experimental Infection. Journal of Veterinary Diagnostic Investigation, 2008, 20, 501-503.	0.5	25
92	Pulmonary Infection Due to Mycobacterium goodii in a Spotted Hyena (Crocuta crocuta) from South Africa. Journal of Wildlife Diseases, 2008, 44, 151-154.	0.3	14
93	Purified Compounds and Extracts from Euclea Species with Antimycobacterial Activity against Mycobacterium bovis and Fast-Growing Mycobacteria. Biological and Pharmaceutical Bulletin, 2008, 31, 1429-1433.	0.6	53
94	Cloning, sequencing and expression of white rhinoceros (Ceratotherium simum) interferon-gamma (IFN- \hat{l}^3) and the production of rhinoceros IFN- \hat{l}^3 specific antibodies. Veterinary Immunology and Immunopathology, 2007, 115, 146-154.	0.5	27
95	Bovine tuberculosis in African buffaloes: observations regarding Mycobacterium bovis shedding into water and exposure to environmental mycobacteria. BMC Veterinary Research, 2007, 3, 23.	0.7	49
96	Fluorescence polarization assay for the detection of antibodies to Mycobacterium bovis in bovine sera. Veterinary Microbiology, 2007, 120, 113-121.	0.8	28
97	Wildlife tuberculosis in South African conservation areas: Implications and challenges. Veterinary Microbiology, 2006, 112, 91-100.	0.8	259
98	A preliminary investigation of tuberculosis and other diseases in African buffalo (<i>Syncerus) Tj ETQq0 0 0 Research, 2005, 72, 145-51.</i>	rgBT /Ove 0.6	rlock 10 Tf 5 41
99	Tuberculosis in Tanzanian Wildlife. Journal of Wildlife Diseases, 2005, 41, 446-453.	0.3	69
100	Evaluation of a PCR test for the diagnosis of Tritrichomonas foetus infection in bulls: effects of sample collection method, storage and transport medium on the test. Theriogenology, 2003, 60, 1269-1278.	0.9	40
101	MYCOBACTERIUM TUBERCULOSIS INFECTIONS IN EIGHT SPECIES AT THE NATIONAL ZOOLOGICAL GARDENS OF SOUTH AFRICA, 1991–2001. Journal of Zoo and Wildlife Medicine, 2003, 34, 364-370.	0.3	39
102	<i>Mycobacterium tuberculosis</i> : An Emerging Disease of Free-Ranging Wildlife. Emerging Infectious Diseases, 2002, 8, 598-601.	2.0	88
103	Implications of Tuberculosis in African Wildlife and Livestock. Annals of the New York Academy of Sciences, 2002, 969, 251-255.	1.8	55
104	The gamma-interferon test: its usefulness in a bovine tuberculosis survey in African buffaloes (Syncerus caffer) in the Kruger National Park. Onderstepoort Journal of Veterinary Research, 2002, 69, 221-7.	0.6	35
105	Mycobacterium avium and Mycobacterium intracellulare infection in mammals. OIE Revue Scientifique Et Technique, 2001, 20, 204-218.	0.5	88
106	Tracing movement of African buffalo in southern Africa. OIE Revue Scientifique Et Technique, 2001, 20, 630-639.	0.5	18
107	Paratuberculosis in sheep: an emerging disease in South Africa. Veterinary Microbiology, 2000, 77, 299-307.	0.8	24