
Pamela J Sykes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2031052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Until There Is a Resolution of the Pro-LNT/Anti-LNT Debate, We Should Head Toward a More Sensible Graded Approach for Protection From Low-Dose Ionizing Radiation. Dose-Response, 2020, 18, 155932582092165.	1.6	15
2	DMAPT is an Effective Radioprotector from Long-Term Radiation-Induced Damage to Normal Mouse Tissues In Vivo. Radiation Research, 2019, 192, 231.	1.5	5
3	The Combination of Metformin and Valproic Acid Has a Greater Anti-tumoral Effect on Prostate Cancer Growth In Vivo than Either Drug Alone. In Vivo, 2019, 33, 99-108.	1.3	11
4	Combination Therapies Using Metformin and/or Valproic Acid in Prostate Cancer: Possible Mechanistic Interactions. Current Cancer Drug Targets, 2019, 19, 368-381.	1.6	9
5	Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide. Clinical and Experimental Metastasis, 2018, 35, 649-661.	3.3	5
6	Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues <i>In Vivo</i> . Radiation Research, 2017, 187, 501-512.	1.5	32
7	MP83-08 COMBINATION OF METFORMIN AND SODIUM VALPROATE FOR PROSTATE CANCER: A RAPID APPROACH FROM BENCH TO CLINICAL TRIAL Journal of Urology, 2017, 197, .	0.4	0
8	The Combination of Metformin and Valproic Acid Induces Synergistic Apoptosis in the Presence of p53 and Androgen Signaling in Prostate Cancer. Molecular Cancer Therapeutics, 2017, 16, 2689-2700.	4.1	26
9	The ups and downs of low dose ionisingÂradiobiology research. Australasian Physical and Engineering Sciences in Medicine, 2016, 39, 807-811.	1.3	1
10	Temporal Responses to X-Radiation Exposure in Spleen in the pKZ1 Mouse Recombination Assay. Radiation Research, 2016, 185, 623-629.	1.5	3
11	A Single Whole-Body Low Dose X-Irradiation Does Not Affect L1, B1 and IAP Repeat Element DNA Methylation Longitudinally. PLoS ONE, 2014, 9, e93016.	2.5	13
12	Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent. Cell Biology and Toxicology, 2014, 30, 55-66.	5.3	28
13	The Methylation of DNA Repeat Elements is Sex-Dependent and Temporally Different in Response to X Radiation in Radiosensitive and Radioresistant Mouse Strains. Radiation Research, 2014, 181, 65.	1.5	19
14	Sensitive quantitative analysis of murine LINE1 DNA methylation using high resolution melt analysis. Epigenetics, 2012, 7, 92-105.	2.7	32
15	Radiation-Induced Bystander Effects: What Are They, and How Relevant Are They to Human Radiation Exposures?. Radiation Research, 2011, 176, 139-157.	1.5	185
16	An Adoptive Transfer Method to Detect Low-Dose Radiation-Induced Bystander EffectsIn Vivo. Radiation Research, 2010, 173, 125-137.	1.5	15
17	If Bystander Effects for Apoptosis Occur in Spleen after Low-Dose Irradiation <i>In Vivo</i> then the Magnitude of the Effect Falls within the Range of Normal Homeostatic Apoptosis. Radiation Research, 2010, 174, 727-731.	1.5	12
18	Determining the Repertoire of IGH Gene Rearrangements to Develop Molecular Markers for Minimal Residual Disease in B-Lineage Acute Lymphoblastic Leukemia. Journal of Molecular Diagnostics, 2009, 11, 194-200.	2.8	11

PAMELA J SYKES

#	Article	IF	CITATIONS
19	Sensitive and Specific Measurement of Minimal Residual Disease in Acute Lymphoblastic Leukemia. Journal of Molecular Diagnostics, 2009, 11, 201-210.	2.8	18
20	Low doses of amifostine protect from chromosomal inversions in spleen in vivo when administered after an occupationally relevant X-radiation dose. International Journal of Low Radiation, 2009, 6, 43.	0.1	2
21	Low dose X-radiation adaptive response in spleen and prostate ofAtmknockout heterozygous mice. International Journal of Radiation Biology, 2007, 83, 523-534.	1.8	21
22	Requirements for Identification of Low Dose and Non-Linear Mutagenic Responses to Ionising Radiation. Dose-Response, 2007, 5, dose-response.0.	1.6	9
23	Extremely Low Doses of X-Radiation can Induce Adaptive Responses in Mouse Prostate. Dose-Response, 2007, 5, dose-response.0.	1.6	17
24	Adaptive Response for Chromosomal Inversions in pKZ1 Mouse Prostate Induced by Low Doses of X Radiation Delivered after a High Dose. Radiation Research, 2007, 167, 682-692.	1.5	59
25	Extremely Low Priming Doses of X Radiation Induce an Adaptive Response for Chromosomal Inversions in pKZ1 Mouse Prostate. Radiation Research, 2006, 166, 757-766.	1.5	55
26	Molecular testing for soft tissue tumours with known translocations. Pathology, 2006, 38, 382-383.	0.6	2
27	Effect of age on the repertoire of cytotoxic memory (CD8+CD45RO+) T cells in peripheral blood: The use of rearranged T cell receptor γ genes as clonal markers. Journal of Immunological Methods, 2006, 308, 1-12.	1.4	4
28	Non-linear chromosomal inversion response in prostate after low dose X-radiation exposure. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 602, 65-73.	1.0	41
29	In Vivo Mutagenic Effect of Very Low Dose Radiation. Dose-Response, 2006, 4, dose-response.0.	1.6	22
30	Prolongation of Sheep Corneal Allograft Survival by Transfer of the Gene Encoding Ovine IL-12-p40 but Not IL-4 to Donor Corneal Endothelium. Journal of Immunology, 2005, 175, 2219-2226.	0.8	51
31	Local Gene Transfer to Modulate Rat Corneal Allograft Rejection. , 2005, 46, 1675.		17
32	Cancer-associated genes can affect somatic intrachromosomal recombination early in carcinogenesis. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 550, 1-10.	1.0	11
33	The Linear No-Threshold Model does not Hold for Low-Dose Ionizing Radiation. Radiation Research, 2004, 162, 447-452.	1.5	106
34	Importance of Minimal Residual Disease Testing During the Second Year of Therapy for Children With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2003, 21, 704-709.	1.6	45
35	Dose-dependent increase or decrease of somatic intrachromosomal recombination produced by etoposide. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 500, 117-124.	1.0	22
36	Effect of Exposure to 900 MHz Radiofrequency Radiation on Intrachromosomal Recombination in pKZ1 Mice. Radiation Research, 2001, 156, 495-502.	1.5	47

PAMELA J SYKES

#	Article	IF	CITATIONS
37	PROLONGATION OF SHEEP CORNEAL ALLOGRAFT SURVIVAL BY EX VIVO TRANSFER OF THE GENE ENCODING INTERLEUKIN-101. Transplantation, 2001, 71, 1214-1220.	1.0	119
38	Gene transfer to ovine corneal endothelium. Clinical and Experimental Ophthalmology, 2001, 29, 316-322.	2.6	19
39	Inversion due to intrachromosomal recombination produced by carcinogens in a transgenic mouse model. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1999, 427, 1-9.	1.0	22
40	Induction of somatic intrachromosomal recombination inversion events by cyclophosphamide in a transgenic mouse model. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 397, 209-219.	1.0	26
41	Longitudinal analysis of circulating myeloma cells detected by allele specific mRNA in situ hybridization. , 1998, 58, 273-277.		6
42	Comparison of myeloma cell contamination of bone marrow and peripheral blood stem cell harvests. British Journal of Haematology, 1996, 92, 614-619.	2.5	45
43	Idiotypic oligonucleotide probes to detect myeloma cells by mRNA in situ hybridization. British Journal of Haematology, 1995, 90, 113-118.	2.5	20
44	lgE+ cells in the peripheral blood of atopic, nonatopic, and bee venom–hypersensitive individuals exhibit the phenotype of highly differentiated B cells. Journal of Allergy and Clinical Immunology, 1995, 95, 587-596.	2.9	15
45	Molecular Biology Techniques in Malignant Lymphoma. Journal of Histotechnology, 1992, 15, 213-218.	0.5	0