
## Ewart J De Visser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2030653/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. Human Factors, 2011, 53, 517-527.                                                                         | 3.5 | 1,178     |
| 2  | Almost human: Anthropomorphism increases trust resilience in cognitive agents Journal of Experimental Psychology: Applied, 2016, 22, 331-349.                                    | 1.2 | 261       |
| 3  | From â€~automation' to â€~autonomy': the importance of trust repair in human–machine interaction.<br>Ergonomics, 2018, 61, 1409-1427.                                            | 2.1 | 185       |
| 4  | Towards a Theory of Longitudinal Trust Calibration in Human–Robot Teams. International Journal of<br>Social Robotics, 2020, 12, 459-478.                                         | 4.6 | 166       |
| 5  | Adaptive Aiding of Human-Robot Teaming. Journal of Cognitive Engineering and Decision Making, 2011, 5, 209-231.                                                                  | 2.3 | 144       |
| 6  | A Little Anthropomorphism Goes a Long Way. Human Factors, 2017, 59, 116-133.                                                                                                     | 3.5 | 74        |
| 7  | The World is not Enough: Trust in <i>Cognitive</i> Agents. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 263-267.                                           | 0.3 | 70        |
| 8  | A Design Methodology for Trust Cue Calibration in Cognitive Agents. Lecture Notes in Computer Science, 2014, , 251-262.                                                          | 1.3 | 54        |
| 9  | Measurement of Trust in Automation: A Narrative Review and Reference Guide. Frontiers in Psychology, 2021, 12, 604977.                                                           | 2.1 | 54        |
| 10 | Team Structure and Team Building Improve Human–Machine Teaming With Autonomous Agents.<br>Journal of Cognitive Engineering and Decision Making, 2019, 13, 258-278.               | 2.3 | 48        |
| 11 | Trust and Distrust of Automated Parking in a Tesla Model X. Human Factors, 2020, 62, 194-210.                                                                                    | 3.5 | 44        |
| 12 | Learning From the Slips of Others: Neural Correlates of Trust in Automated Agents. Frontiers in<br>Human Neuroscience, 2018, 12, 309.                                            | 2.0 | 34        |
| 13 | Team Performance in Networked Supervisory Control of Unmanned Air Vehicles. Human Factors, 2014,<br>56, 463-475.                                                                 | 3.5 | 33        |
| 14 | Trust Repair Strategies with Self-Driving Vehicles: An Exploratory Study. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 1108-1112.                          | 0.3 | 33        |
| 15 | Calibrating Trust in Automation Through Familiarity With the Autoparking Feature of a Tesla Model X.<br>Journal of Cognitive Engineering and Decision Making, 2019, 13, 279-294. | 2.3 | 33        |
| 16 | Application of a System-Wide Trust Strategy when Supervising Multiple Autonomous Agents.<br>Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 133-137.          | 0.3 | 27        |
| 17 | An fMRI and effective connectivity study investigating miss errors during advice utilization from human and machine agents. Social Neuroscience, 2017, 12, 570-581.              | 1.3 | 23        |
|    |                                                                                                                                                                                  |     |           |

EWART J DE VISSER

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dopamine Beta Hydroxylase Genotype Identifies Individuals Less Susceptible to Bias in<br>Computer-Assisted Decision Making. PLoS ONE, 2012, 7, e39675.                                                                         | 2.5 | 21        |
| 20 | Politeness in Machine-Human and Human-Human Interaction. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 279-283.                                                                                           | 0.3 | 20        |
| 21 | Let Tesla Park Your Tesla: Driver Trust in a Semi-Automated Car. , 2019, , .                                                                                                                                                   |     | 20        |
| 22 | Statistical modelling of networked human-automation performance using working memory capacity.<br>Ergonomics, 2014, 57, 295-318.                                                                                               | 2.1 | 18        |
| 23 | The Influence of Risky Conditions in Trust in Autonomous Systems. Proceedings of the Human Factors and Ergonomics Society, 2017, 61, 324-328.                                                                                  | 0.3 | 18        |
| 24 | Robot Authority in Human-Robot Teaming: Effects of Human-Likeness and Physical Embodiment on Compliance. Frontiers in Psychology, 2021, 12, 625713.                                                                            | 2.1 | 18        |
| 25 | Testing the Efficacy of Human-Human Trust Repair Strategies with Machines. Proceedings of the<br>Human Factors and Ergonomics Society, 2017, 61, 1794-1798.                                                                    | 0.3 | 17        |
| 26 | Two uncanny valleys: Re-evaluating the uncanny valley across the full spectrum of real-world human-like robots. Computers in Human Behavior, 2022, 135, 107340.                                                                | 8.5 | 16        |
| 27 | Robot Authority in Human-Machine Teams: Effects of Human-Like Appearance on Compliance. Lecture<br>Notes in Computer Science, 2019, , 63-78.                                                                                   | 1.3 | 15        |
| 28 | Building resilience with the Stress Resilience Training System: Design validation andÂapplications.<br>Work, 2016, 54, 351-366.                                                                                                | 1.1 | 14        |
| 29 | The effects of pitch contour and flanging on trust in speaking cognitive agents. , 2014, , .                                                                                                                                   |     | 13        |
| 30 | A Framework for Rebuilding Trust in Social Automation Across Health-Care Domains. Proceedings of the International Symposium of Human Factors and Ergonomics in Healthcare, 2015, 4, 201-205.                                  | 0.3 | 13        |
| 31 | Perceptions of Infidelity with Sex Robots. , 2021, , .                                                                                                                                                                         |     | 12        |
| 32 | Toward a Unified Theory of Learned Trust in Interpersonal and Human-Machine Interactions. ACM Transactions on Interactive Intelligent Systems, 2019, 9, 1-33.                                                                  | 3.7 | 10        |
| 33 | Mixing It Up: How Mixed Groups of Humans and Machines Modulate Conformity. Journal of Cognitive<br>Engineering and Decision Making, 2019, 13, 242-257.                                                                         | 2.3 | 9         |
| 34 | Conflict Mediation in Human-Machine Teaming: Using a Virtual Agent to Support Mission Planning and Debriefing. , 2019, , .                                                                                                     |     | 8         |
| 35 | Assessment of Trust in Automation in the "Real World― Requirements for New Trust in Automation<br>Measurement Techniques for Use by Practitioners. Journal of Cognitive Engineering and Decision<br>Making, 2022, 16, 101-118. | 2.3 | 7         |
| 36 | Factors that affect younger and older adults' causal attributions of robot behaviour. Ergonomics, 2020, 63, 421-439.                                                                                                           | 2.1 | 6         |

| #  | Article                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Using Iterative Design and Testing Towards the Development of SRTS®. Proceedings of the Human<br>Factors and Ergonomics Society, 2013, 57, 2076-2080. | 0.3 | 4         |
| 38 | The Design and Integration of a Comprehensive Measurement System to Assess Trust in Automated Driving. , 2021, , .                                    |     | 4         |
| 39 | l'm Not Playing Anymore! A Study Comparing Perceptions of Robot and Human Cheating Behavior.<br>Lecture Notes in Computer Science, 2019, , 410-419.   | 1.3 | 4         |
| 40 | Designing Man's New Best Friend: Enhancing Human-Robot Dog Interaction through Dog-Like Framing<br>and Appearance. Sensors, 2022, 22, 1287.           | 3.8 | 2         |
| 41 | Appropriately Representing Military Tasks for Human-Machine Teaming Research. Lecture Notes in<br>Computer Science, 2020, , 245-265.                  | 1.3 | 1         |