Dong-Zhi Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2030407/dong-zhi-zhang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

140
papers

6,919
citations

48
h-index

79
g-index

7.05
ext. papers

ext. citations

7,05
avg, IF

L-index

#	Paper	IF	Citations
140	Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor. <i>Nano Energy</i> , 2022 , 94, 106881	17.1	7
139	Highly sensitive ammonia sensor based on PSS doped ZIF-8-derived porous carbon/polyaniline hybrid film coated on quartz crystal microbalance. <i>Sensors and Actuators B: Chemical</i> , 2022 , 357, 131419	8.5	5
138	UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001)TiO/MXene heterostructure for food spoilage detection. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127160	12.8	23
137	Green light-driven acetone gas sensor based on electrospinned CdS nanospheres/CoO nanofibers hybrid for the detection of exhaled diabetes biomarker. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 261-271	9.3	8
136	Construction and DFT study of Pd decorated WSe2 nanosheets for highly sensitive CO detection at room temperature. <i>Sensors and Actuators B: Chemical</i> , 2022 , 360, 131634	8.5	4
135	Highly sensitive xylene gas sensor based on NiO-NiCo2O4 hierarchical spherical structure constructed with nanorods. <i>IEEE Sensors Journal</i> , 2022 , 1-1	4	1
134	Ultra-sensitive, stretchable, and bidirectional wearable strain sensor for human motion detection. Journal of Materials Chemistry C, 2022 , 10, 7076-7086	7.1	4
133	Rotating triboelectric-electromagnetic nanogenerator driven by tires for self-powered MXene-based flexible wearable electronics. <i>Chemical Engineering Journal</i> , 2022 , 136914	14.7	6
132	Fabrication and properties of room temperature ammonia gas sensor based on SnO2 modified WSe2 nanosheets heterojunctions. <i>Applied Surface Science</i> , 2022 , 153564	6.7	2
131	Performance prediction of 2D vertically stacked MoS2-WS2 heterostructures base on first-principles theory and Pearson correlation coefficient. <i>Applied Surface Science</i> , 2022 , 596, 153498	6.7	4
130	UV enhanced NO2 gas sensing at room temperature based on coral-like tin diselenide/MOFs-derived nanoflower-like tin dioxide heteronanostructures. <i>Sensors and Actuators B: Chemical</i> , 2021 , 131049	8.5	6
129	High-sensitive NO2 sensor based on p-NiCo2O4/n-WO3 heterojunctions. <i>Sensors and Actuators B: Chemical</i> , 2021 , 352, 130912	8.5	7
128	Ammonia gas sensing properties and density functional theory investigation of coral-like Au-SnSe2 Schottky junction. <i>Sensors and Actuators B: Chemical</i> , 2021 , 332, 129440	8.5	15
127	Room Temperature Acetone-Sensing Properties of Ru-Doped MoSelNanoflowers: Experimental and Density Functional Theory Study. <i>IEEE Electron Device Letters</i> , 2021 , 42, 739-742	4.4	0
126	Flexible Pressure Sensor Based on Molybdenum Diselide/Multi-Walled Carbon Nanotubes for Human Motion Detection. <i>IEEE Sensors Journal</i> , 2021 , 21, 10491-10497	4	3
125	An Electrochemical Nonenzymatic Microsensor Modified by Nickel Cobaltate Nanospheres for Glucose Sensing in Urine. <i>IEEE Sensors Journal</i> , 2021 , 21, 13074-13081	4	4
124	Construction of MoO3/MoSe2 nanocomposite-based gas sensor for low detection limit trimethylamine sensing at room temperature. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 17301-17310	2.1	2

123	Room-Temperature Benzene Sensing with Au-Doped ZnO Nanorods/Exfoliated WSe Nanosheets and Density Functional Theory Simulations. <i>ACS Applied Materials & ACS Applied Materials</i> & ACS Applied Materials & ACS Applied Materials & ACS Applied Materials & ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACC ACC ACC ACC ACC ACC ACC ACC	1635	17
122	Highly Sensitive QCM Humidity Sensor Based on MOFs-Derived SnO2/Chitosan Hybrid Film. <i>IEEE Sensors Journal</i> , 2021 , 21, 4385-4390	4	9
121	Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. <i>Coordination Chemistry Reviews</i> , 2021 , 427, 213597	23.2	32
120	Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes. <i>Journal of Alloys and Compounds</i> , 2021 , 860, 158252	5.7	15
119	A self-powered 2D-material sensor unit driven by a SnSe piezoelectric nanogenerator. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 4716-4723	13	10
118	Ultra-highly sensitive humidity sensing by polydopamine/graphene oxide nanostructure on quartz crystal microbalance. <i>Applied Surface Science</i> , 2021 , 538, 147816	6.7	11
117	Sulfur dioxide gas sensing at room temperature based on tin selenium/tin dioxide hybrid prepared via hydrothermal and surface oxidation treatment. <i>Rare Metals</i> , 2021 , 40, 1588-1596	5.5	11
116	Microwave-assisted hydrothermal synthesis of copper oxide-based gas-sensitive nanostructures. <i>Rare Metals</i> , 2021 , 40, 1477-1493	5.5	24
115	Adsorption of gas molecules (NH3, C2H6O, C3H6O, CO, H2S) on a noble metal (Ag, Au, Pt, Pd, Ru)-doped MoSe2 monolayer: a first-principles study. <i>New Journal of Chemistry</i> , 2021 , 45, 12367-12376	3.6	4
114	A high-stability weighing paper/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered In2O3 nanocubes/SnS2 nanoflower NO2 gas sensors. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14495-14506	13	18
113	A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 14524-14533	13	17
112	Electrospinning of Flexible Poly(vinyl alcohol)/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator. <i>Nano-Micro Letters</i> , 2021 , 13, 57	19.5	67
111	Hydrogen Sulfide Gas Sensor Based on Graphitic Nitrogen Carbide/Alpha-Iron Oxide Binary Nanostructure. <i>IEEE Sensors Journal</i> , 2021 , 21, 4250-4256	4	0
110	Multifunctional Latex/Polytetrafluoroethylene-Based Triboelectric Nanogenerator for Self-Powered Organ-like MXene/Metal-Organic Framework-Derived CuO Nanohybrid Ammonia Sensor. <i>ACS Nano</i> , 2021 , 15, 2911-2919	16.7	118
109	Self-powered ethanol gas sensor based on the piezoelectric Ag/ZnO nanowire arrays at room temperature. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 7739-7750	2.1	7
108	High-performance ammonia gas sensor based on bimetallic oxide Zn2SnO4 decorated with reduced graphene oxide. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 20139-20148	2.1	О
107	MXene/Co3O4 composite based formaldehyde sensor driven by ZnO/MXene nanowire arrays piezoelectric nanogenerator. <i>Sensors and Actuators B: Chemical</i> , 2021 , 339, 129923	8.5	31
106	A High-performance Room Temperature Benzene Gas Sensor Based on CoTiO3 Covered TiO2 Nanospheres Decorated With Pd Nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2021 , 350, 130830	8.5	27

105	Hydrogen sulfide gas sensing properties of metal organic framework-derived Fe2O3 hollow nanospheres decorated with MoSe2 nanoflowers. <i>Sensors and Actuators B: Chemical</i> , 2021 , 344, 130221	8.5	12
104	High-performance humidity sensor based on graphitic carbon nitride/polyethylene oxide and construction of sensor array for non-contact humidity detection. <i>Sensors and Actuators B: Chemical</i> , 2021 , 344, 130219	8.5	4
103	Polydopamine-modified SnO2 nanofiber composite coated QCM gas sensor for high-performance formaldehyde sensing. <i>Sensors and Actuators B: Chemical</i> , 2021 , 345, 130299	8.5	21
102	In situ polymerized polyaniline/MXene (V2C) as building blocks of supercapacitor and ammonia sensor self-powered by electromagnetic-triboelectric hybrid generator. <i>Nano Energy</i> , 2021 , 88, 106242	17.1	20
101	Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor. <i>Nano Energy</i> , 2021 , 89, 106410	17.1	54
100	Two-step hydrothermal fabrication of CeO2-loaded MoS2 nanoflowers for ethanol gas sensing application. <i>Applied Surface Science</i> , 2021 , 568, 150942	6.7	2
99	Adsorption of atmospheric gas molecules (NH3, H2S, CO, H2, CH4, NO, NO2, C6H6 and C3H6O) on two-dimensional polyimide with hydrogen bonding: a first-principles study. <i>New Journal of Chemistry</i> , 2021 , 45, 5240-5251	3.6	5
98	Flexible wearable humidity sensor based on cerium oxide/graphitic carbon nitride nanocomposite self-powered by motion-driven alternator and its application for human physiological detection. Journal of Materials Chemistry A, 2021, 9, 5619-5629	13	25
97	Self-assembly fabrication of titanium dioxide nanospheres-decorated tungsten diselenide hexagonal nanosheets for ethanol gas sensing application. <i>Applied Surface Science</i> , 2020 , 527, 146781	6.7	21
96	High-sensitivity resistive humidity sensor based on graphitic carbon nitride nanosheets and its application. <i>Sensors and Actuators B: Chemical</i> , 2020 , 315, 128058	8.5	24
95	High-performance NO2 gas sensor based on bimetallic oxide CuWO4 decorated with reduced graphene oxide. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 6706-6715	2.1	9
94	Carbon microsphere-templated synthesis of ZnCo2O4 hollow spheres functionalized with Ag nanoparticles for sub-ppm-level acetone gas detection. <i>Ceramics International</i> , 2020 , 46, 15176-15182	5.1	11
93	Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coordination Chemistry Reviews, 2020 , 413, 213272	23.2	79
92	Hydrothermal Fabrication of Ag-Decorated MoSellReduced Graphene Oxide Ternary Hybrid for HB Gas Sensing. <i>IEEE Sensors Journal</i> , 2020 , 20, 13262-13268	4	7
91	Ammonia sensing properties of metalBrganic frameworks-derived zinc oxide/reduced graphene oxide nanocomposite. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 4463-4472	2.1	14
90	Nanoheterostructure Construction and DFT Study of Ni-Doped InO Nanocubes/WS Hexagon Nanosheets for Formaldehyde Sensing at Room Temperature. <i>ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	77
89	Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 1273	69 ⁵	53
88	High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. <i>Nano Energy</i> , 2020 , 67, 10425	1 ^{17.1}	128

Tungsten trioxide nanoparticles decorated tungsten disulfide nanoheterojunction for highly sensitive ethanol gas sensing application. <i>Applied Surface Science</i> , 2020 , 503, 144063	6.7	22
Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. <i>Sensors and Actuators B: Chemical</i> , 2020 , 322, 128615	8.5	26
Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures. <i>Nanoscale</i> , 2020 , 12, 18815-188	3 2 3	17
W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 127274	8.5	93
Flexible humidity sensing and portable applications based on MoSe2 nanoflowers/copper tungstate nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2020 , 304, 127234	8.5	30
Polypyrrole-Modified Tin Disulfide Nanoflower-Based Quartz Crystal Microbalance Sensor for Humidity Sensing. <i>IEEE Sensors Journal</i> , 2019 , 19, 9166-9171	4	12
MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. <i>Sensors and Actuators B: Chemical</i> , 2019 , 300, 127037	8.5	75
A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 17907-17915	2.1	10
High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. <i>Sensors and Actuators B: Chemical</i> , 2019 , 299, 126973	8.5	53
Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility. <i>Sensors and Actuators B: Chemical</i> , 2019 , 287, 398-407	8.5	45
A First-Principles Study of the SF6 Decomposed Products Adsorbed Over Defective WS2 Monolayer as Promising Gas Sensing Device. <i>IEEE Transactions on Device and Materials Reliability</i> , 2019 , 19, 473-483	3 ^{1.6}	56
Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/reduced graphene oxide nanostructure. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 11070-11078	2.1	14
Facile fabrication of graphene oxide/Nafion/indium oxide for humidity sensing with highly sensitive capacitance response. <i>Sensors and Actuators B: Chemical</i> , 2019 , 292, 187-195	8.5	33
Experimental and density functional theory investigation of Pt-loaded titanium dioxide/molybdenum disulfide nanohybrid for SO2 gas sensing. <i>New Journal of Chemistry</i> , 2019 , 43, 490	0 0-4 90 [.]	7 ²¹
Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. <i>Sensors and Actuators B: Chemical</i> , 2019 , 289, 32-	4 ^{8.5}	116
Fabrication of polypyrrole/graphene oxide hybrid nanocomposite for ultrasensitive humidity sensing with unprecedented sensitivity. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 4967-4976	2.1	12
Ultrasensitive H2S gas detection at room temperature based on copper oxide/molybdenum disulfide nanocomposite with synergistic effect. <i>Sensors and Actuators B: Chemical</i> , 2019 , 287, 346-355	8.5	55
Fabrication of Pd-Decorated MoSe2 Nanoflowers and Density Functional Theory Simulation Toward Ammonia Sensing. <i>IEEE Electron Device Letters</i> , 2019 , 40, 616-619	4.4	54
	Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sensors and Actuators B: Chemical, 2020, 322, 128615 Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures. Nanoscale, 2020, 12, 18815-1881 W180-49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensors and Actuators B: Chemical, 2020, 304, 127274 Flexible humidity sensing and portable applications based on MoSe2 nanoflowers/copper tungstate nanoparticles. Sensors and Actuators B: Chemical, 2020, 304, 127234 Polypyrrole-Modified Tin Disulfide Nanoflower-Based Quartz Crystal Microbalance Sensor For Humidity Sensing. IEEE Sensors Journal, 2019, 19, 9166-9171 MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sensors and Actuators B: Chemical, 2019, 300, 127037 A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm. Journal of Materials Science: Materials in Electronics, 2019, 30, 17907-17915 High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and list wearable application in respiration detection. Sensors and Actuators B: Chemical, 2019, 299, 126973 Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility. Sensors and Actuators B: Chemical, 2019, 287, 398-407 A First-Principles Study of the SF6 Decomposed Products Adsorbed Over Defective WS2 Monolayer as Promising Gas Sensing Device. IEEE Transactions on Device and Materials Reliability, 2019, 19, 473-483 Enhanced SO2 gas sensing propense exide nanostructure. Journal of Materials Science: Materials in Electronics, 2019, 30, 11070-11078 Facile Fabrication of graphene oxide nanostructure. Journal of Pt-loaded Litanium dioxide/molybdenum disulfide nanohybrid for SO2 ga	Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sensors and Actuators B: Chemical, 2020, 322, 128615 Green light-driven enhanced ammonia sensing at room temperature based on seed-mediated growth of gold-ferrosoferric oxide dumbbell-like heteronanostructures. Nanoscale, 2020, 12, 18815-18825 W18049/Ti3C2Tx Mxnen enanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensors and Actuators B: Chemical, 2020, 304, 127274 R54818181825 W18049/Ti3C2Tx Mxnen enanocomposites for highly sensitive acetone gas sensor with low detection limit. Sensors and Actuators B: Chemical, 2020, 304, 127273 Flexible humidity sensing and portable applications based on MoSe2 nanoflowers/copper tungstate nanoparticles. Sensors and Actuators B: Chemical, 2020, 304, 127234 Polypyrrole-Modified Tin Disulfide Nanoflower-Based Quartz Crystal Microbalance Sensor for Humidity Sensing. IEEE Sensors Journal, 2019, 19, 9166-9171 MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sensors and Actuators B: Chemical, 2019, 300, 127037 A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyanline/PbS quantum dots nanofilm. Journal of Materials Science: Materials in Electronics, 2019, 30, 17907-17915 High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sensors and Actuators B: Chemical, 2019, 299, 126973 Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility. Sensors and Actuators B: Chemical, 2019, 287, 398-407 A First-Principles Study of the SF6 Decomposed Products Adsorbed Over Defective WS2 Monolayer as Promising Gas Sensing Device. IEEE Transactions on Device and Materials Reliability, 2019, 19, 473-483 1.6 Enhanced SO2 gas sensing properties of metal organic frameworks-derived titanium dioxide/ed

69	Hierarchical Nanoheterostructure of Tungsten Disulfide Nanoflowers Doped with Zinc Oxide Hollow Spheres: Benzene Gas Sensing Properties and First-Principles Study. <i>ACS Applied Materials & Materials amp; Interfaces</i> , 2019 , 11, 31245-31256	9.5	55
68	Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. <i>Nano Energy</i> , 2019 , 65, 103	9 ¹⁷ 4 ¹	136
67	In-situ polymerization of metal organic frameworks-derived ZnCo2O4/polypyrrole nanofilm on QCM electrodes for ultra-highly sensitive humidity sensing application. <i>Sensors and Actuators A: Physical</i> , 2019 , 295, 687-695	3.9	29
66	Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles. <i>Sensors and Actuators B: Chemical</i> , 2019 , 301, 127081	8.5	57
65	Facile Fabrication of Polyaniline Nanocapsule Modified Zinc Oxide Hexagonal Microdiscs for H2S Gas Sensing Applications. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 1906-1913	3.9	32
64	Metal-organic frameworks-derived zinc oxide nanopolyhedra/S, N: graphene quantum dots/polyaniline ternary nanohybrid for high-performance acetone sensing. <i>Sensors and Actuators B: Chemical</i> , 2019 , 288, 232-242	8.5	68
63	Flexible MoS2 sensor arrays for high performance label-free ion sensing. <i>Sensors and Actuators A: Physical</i> , 2019 , 286, 51-58	3.9	23
62	Facile synthesis and ammonia gas sensing properties of NiO nanoparticles decorated MoS2 nanosheets heterostructure. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 573-581	2.1	30
61	Cobalt-doped indium oxide/molybdenum disulfide ternary nanocomposite toward carbon monoxide gas sensing. <i>Journal of Alloys and Compounds</i> , 2019 , 777, 443-453	5.7	17
60	Humidity Sensing Properties of Metal Organic Framework-Derived Hollow Ball-Like TiO2 Coated QCM Sensor. <i>IEEE Sensors Journal</i> , 2019 , 19, 2909-2915	4	38
59	Liquefied Petroleum Gas Sensing Properties of ZnO/PPy/PbS QDs Nanocomposite Prepared by Self-Assembly Combining With SILAR Method. <i>IEEE Sensors Journal</i> , 2019 , 19, 2855-2862	4	22
58	Metal-organic frameworks-derived hollow zinc oxide/cobalt oxide nanoheterostructure for highly sensitive acetone sensing. <i>Sensors and Actuators B: Chemical</i> , 2019 , 283, 42-51	8.5	113
57	Recent advances in phosphorene as a sensing material. <i>Nano Today</i> , 2018 , 20, 13-32	17.9	105
56	Hierarchical assembly of urchin-like alpha-iron oxide hollow microspheres and molybdenum disulphide nanosheets for ethanol gas sensing. <i>Journal of Colloid and Interface Science</i> , 2018 , 523, 217-2	225 ³	27
55	High-performance QCM humidity sensor based on graphene oxide/tin oxide/polyaniline ternary nanocomposite prepared by in-situ oxidative polymerization method. <i>Sensors and Actuators B: Chemical</i> , 2018 , 262, 531-541	8.5	89
54	Fabrication of Pd-decorated TiO/MoS ternary nanocomposite for enhanced benzene gas sensing performance at room temperature. <i>Talanta</i> , 2018 , 182, 324-332	6.2	44
53	Flexible Strain Sensor Based on Layer-by-Layer Self-Assembled Graphene/Polymer Nanocomposite Membrane and Its Sensing Properties. <i>Journal of Electronic Materials</i> , 2018 , 47, 2263-2270	1.9	12
52	Ultrahigh-performance impedance humidity sensor based on layer-by-layer self-assembled tin disulfide/titanium dioxide nanohybrid film. <i>Sensors and Actuators B: Chemical</i> , 2018 , 266, 52-62	8.5	69

51	Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite. <i>Sensors and Actuators B: Chemical</i> , 2018 , 265, 529-538	8.5	55
50	Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 1869-1877	8.5	205
49	Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. <i>Sensors and Actuators B: Chemical</i> , 2018 , 274, 575-586	8.5	82
48	Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing. <i>Sensors and Actuators B: Chemical</i> , 2018 , 273, 176-184	8.5	85
47	Flexible integrated black phosphorus sensor arrays for high performance ion sensing. <i>Sensors and Actuators B: Chemical</i> , 2018 , 273, 358-364	8.5	30
46	Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. <i>Sensors and Actuators B: Chemical</i> , 2018 , 258, 895-905	8.5	102
45	Quartz Crystal Microbalance Sensor for Humidity Sensing Based on Layer-by-Layer Self-Assembled PDDAC/Graphene Oxide Film. <i>IEEE Sensors Journal</i> , 2018 , 18, 9471-9476	4	26
44	Illumination impact on monolayer MoS2 chemical sensor arrays. <i>Sensors and Actuators A: Physical</i> , 2018 , 283, 34-41	3.9	8
43	Construction of Co3O4 nanorods/In2O3 nanocubes heterojunctions for efficient sensing of NO2 gas at low temperature. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 19558-19566	2.1	14
42	Hierarchical Self-Assembled SnS Nanoflower/ZnSnO Hollow Sphere Nanohybrid for Humidity-Sensing Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 32631-32639	9.5	114
41	Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method. <i>Journal of Colloid and Interface Science</i> , 2018 , 528, 184-191	9.3	27
40	Fabrication of iron-doped titanium dioxide quantum dots/molybdenum disulfide nanoflower for ethanol gas sensing. <i>Journal of Colloid and Interface Science</i> , 2018 , 529, 556-567	9.3	32
39	Layer-by-Layer Self-assembly of CoO Nanorod-Decorated MoS Nanosheet-Based Nanocomposite toward High-Performance Ammonia Detection. <i>ACS Applied Materials & Detection (ACS APPLIED & Detection (ACS APPLI</i>	19 15	183
38	High-performance sulfur dioxide sensing properties of layer-by-layer self-assembled titania-modified graphene hybrid nanocomposite. <i>Sensors and Actuators B: Chemical</i> , 2017 , 245, 560-567	7 ^{8.5}	71
37	Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing. <i>Journal of Alloys and Compounds</i> , 2017 , 711, 652-658	5.7	27
36	Fabrication of platinum-loaded cobalt oxide/molybdenum disulfide nanocomposite toward methane gas sensing at low temperature. <i>Sensors and Actuators B: Chemical</i> , 2017 , 252, 624-632	8.5	60
35	Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. <i>Sensors and Actuators B: Chemical</i> , 2017 , 247, 875-882	8.5	98
34	Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film. <i>Journal of Alloys and Compounds</i> , 2017 , 698, 476-	-4 8 73	93

33	Characterization of CuOffeduced graphene oxide sandwiched nanostructure and its hydrogen sensing characteristics. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 2763-2768	2.1	16
32	Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 206	66 ² 20	5 7 7 ²
31	Room-temperature highly sensitive CO gas sensor based on Ag-loaded zinc oxide/molybdenum disulfide ternary nanocomposite and its sensing properties. <i>Sensors and Actuators B: Chemical</i> , 2017 , 253, 1120-1128	8.5	96
30	Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors. <i>Biosensors and Bioelectronics</i> , 2017 , 98, 68-75	11.8	66
29	Room temperature hydrogen gas sensor based on palladium decorated tin oxide/molybdenum disulfide ternary hybrid via hydrothermal route. <i>Sensors and Actuators B: Chemical</i> , 2017 , 242, 15-24	8.5	151
28	Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. <i>Sensors and Actuators B: Chemical</i> , 2017 , 240, 55-65	8.5	213
27	Fabrication of palladium inc oxide fieduced graphene oxide hybrid for hydrogen gas detection at low working temperature. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 1667-1673	2.1	23
26	Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film. <i>Nanomaterials</i> , 2017 , 7,	5.4	19
25	Humidity-Sensing Properties of One-Step Hydrothermally Synthesized Tin Dioxide-Decorated Graphene Nanocomposite on Polyimide Substrate. <i>Journal of Electronic Materials</i> , 2016 , 45, 4275-4281	1.9	20
24	Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method. <i>Journal of Electronic Materials</i> , 2016 , 45, 4324-4330	1.9	19
23	Layer-by-Layer Self-Assembly of Zinc Oxide/Graphene Oxide Hybrid Toward Ultrasensitive Humidity Sensing. <i>IEEE Electron Device Letters</i> , 2016 , 37, 916-919	4.4	57
22	Sensor array based on metal oxide modified graphene for the detection of multi-component mixed gas 2016 ,		2
21	Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 3723-3730	2.1	64
20	Humidity-sensing properties of hierarchical ZnO/MWCNTs/ZnO nanocomposite film sensor based on electrostatic layer-by-layer self-assembly. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 2481-2487	2.1	22
19	Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. <i>Sensors and Actuators B: Chemical</i> , 2016 , 225, 233-240	8.5	286
18	Layer-by-Layer Nanoassembly Fabrication and Humidity Sensing Behaviors of Multi-Walled Carbon Nanotubes/Polyelectrolyte Hybrid Film. <i>Journal of Nanoscience and Nanotechnology</i> , 2016 , 16, 6705-671	đ.3	13
17	Graphene field-effect transistors with tunable sensitivity for high performance Hg (II) sensing. <i>Applied Physics Letters</i> , 2016 , 109, 153101	3.4	34
16	Towards intrinsic MoS2 devices for high performance arsenite sensing. <i>Applied Physics Letters</i> , 2016 , 109, 063110	3.4	21

LIST OF PUBLICATIONS

15	Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. <i>ACS Applied Materials & amp; Interfaces</i> , 2016 , 8, 14142-9	9.5	317
14	Fabrication and characterization of layer-by-layer nano self-assembled ZnO nanorods/carbon nanotube film sensor for ethanol gas sensing application at room temperature. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 7445-7451	2.1	36
13	Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 5937-59	9 4 5 ¹	69
12	Air-Stable Black Phosphorus Devices for Ion Sensing. <i>ACS Applied Materials & Devices</i> , 2015, 7, 24396-402	9.5	125
11	Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. <i>RSC Advances</i> , 2015 , 5, 3016-3022	3.7	203
10	Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. <i>RSC Advances</i> , 2015 , 5, 18666-18672	3.7	96
9	Characterization of layer-by-layer nano self-assembled carbon nanotube/polymer film sensor for ethanol gas sensing properties. <i>Microsystem Technologies</i> , 2014 , 20, 379-385	1.7	17
8	Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. <i>Sensors and Actuators B: Chemical</i> , 2014 , 197, 66-72	8.5	346
7	Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. <i>Sensors and Actuators B: Chemical</i> , 2014 , 203, 263-270	8.5	203
6	Soft Measurement of Water Content in Oil-Water Two-Phase Flow Based on RS-SVM Classifier and GA-NN Predictor. <i>Measurement Science Review</i> , 2014 , 14, 219-226	1.7	10
5	Controllable fabrication and electromechanical characterization of electrophoresis assembled single-walled carbon nanotube-polymer film transducers. <i>Microsystem Technologies</i> , 2013 , 19, 1041-104	1 7 .7	1
4	Tunable mechanical properties of layer-by-layer self-assembled carbon nanotube/polymer nanocomposite membranes for M/NEMS. <i>Sensors and Actuators A: Physical</i> , 2012 , 185, 101-108	3.9	16
3	Sliding-Window Recursive PLS Based Soft Sensing Model and Its Application to the Quality Control of Rubber Mixing Process. <i>Communications in Computer and Information Science</i> , 2009 , 16-24	0.3	1
2	A fast self-healing multifunctional polyvinyl alcohol nano-organic composite hydrogel as a building block for highly sensitive strain/pressure sensors. <i>Journal of Materials Chemistry A</i> ,	13	11
1	An in situ polymerized polypyrrole/halloysite nanotubeBilver nanoflower based flexible wearable pressure sensor with a large measurement range and high sensitivity. <i>Journal of Materials Chemistry C</i> ,	7.1	4